Telecom Wave Plates

These zero-order telecom wave plates are specifically designed to meet the demanding requirements of WDM component designers using 1550 nm light. The half-wave plate is 91 µm thick while the quarter-wave plate is 137 µm thick. Due to the thickness of the crystal quartz plate, the quarter-wave plate retards the wave by 0.75 λ , which results in a polarization state with the opposite sign of that produced by using a quarter-wave plate with a retardation of 0.25 λ . Zero-order wave plates have the best possible angle, temperature, and wavelength performance.

Material: Crystal Quartz Size: 5.0 mm x 5.0 mm Retardance Accuracy: $\lambda/500$

- Surface Quality: 20-10 Scratch-Dig
- Parallelism: 10 arcsec
- Damage Threshold: 10 J/cm² @ 1542 nm, 10 ns Pulses, 10 Hz
- 5 mm

Optics Kits

SECTIONS V

Linear Polarizers

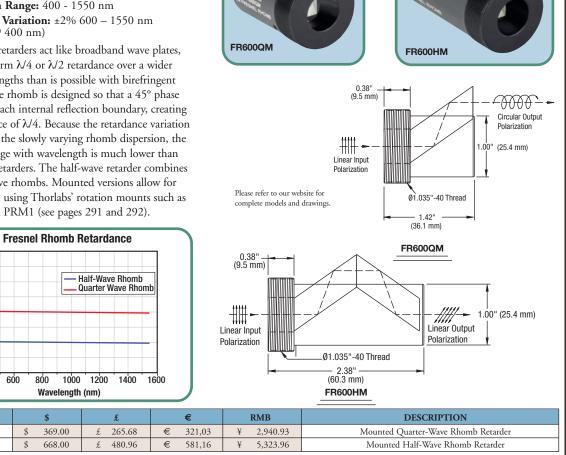
Wave Plates/ Retarders

Depolarizers

I ow-	Tempe

Features

- perature Sensitivity Custom Sizes Available
- Custom Center Wavelengths Available


ITEM #	\$		£		€		RMB		THICKNESS	DESCRIPTION
WPQ501	\$	85.00	£	61.20	€	73,95	¥	677.45	137 μm	Quarter-Wave Plate, 1550 nm Center Wavelength, 5 mm x 5 mm
WPH502	\$	85.00	£	61.20	€	73,95	¥	677.45	91 µm	Half-Wave Plate, 1550 nm Center Wavelength, 5 mm x 5 mm

$\lambda/4$ and $\lambda/2$ Fresnel Rhomb Retarders

Specifications

- Material: N-BK7
- Clear Aperture: 10.0 +0.0/-0.1 mm
- Surface Quality: 20-10 Scratch-Dig
- Damage Threshold: 2 W/cm²
- Wavelength Range: 400 1550 nm
- Retardance Variation: ±2% 600 1550 nm (Max 5% @ 400 nm)

Fresnel rhomb retarders act like broadband wave plates, providing uniform $\lambda/4$ or $\lambda/2$ retardance over a wider range of wavelengths than is possible with birefringent wave plates. The rhomb is designed so that a 45° phase shift occurs at each internal reflection boundary, creating a total retardance of $\lambda/4$. Because the retardance variation is a function of the slowly varying rhomb dispersion, the retardance change with wavelength is much lower than other types of retarders. The half-wave retarder combines two quarter-wave rhombs. Mounted versions allow for easy installation using Thorlabs' rotation mounts such as the RSP1C and PRM1 (see pages 291 and 292).

ITEM #

FR600QM

FR600HM

1.00

Retardance (waves) 0.50 0.25

0.00 | 400

CHAPTERS

Optical Elements

Optical Isolators

Optical Systems

Specifications

- Surface Flatness: $\geq \lambda/10 @ 633$ nm

- **AR Coated:** < 0.25% Per Surface