高NA非球面レンズ:CNC研磨、UV溶融石英(UVFS)
- High Numerical Aperture of 0.65
- UV Fused Silica Substrate
- Uncoated or AR-Coated for 245 - 420 nm
- CNC Precision Polished
CNC Satisloh Grinder Shaping an Aspheric Lens
ASL1210
Ø12.5 mm Uncoated
ASL2520-UV
Ø25.0 mm UV Coating
ASL5040
Ø50.0 mm Uncoated
Please Wait
Common Specificationsa | |
---|---|
Design Wavelength | 405 nm |
Numerical Aperture (NA)b | 0.65 |
Diameter Tolerance | +0.00/-0.05 mm |
Focal Length Tolerance | ±1.0% |
Surface Irregularity of Convex Surface | < 0.75 µm (RMS) |
Surface Flatness of Plano Surface | < λ/4 at 633 nm |
Centration | < 3 arcmin |
Surface Quality | 60-40 Scratch-Dig |
Index of Refraction (n)c | 1.4585 |
Abbe Number (VD) | 67.82 ± 1.0% |
f/#c,d | 0.87 |
Substrate Material | UV Fused Silicae |
Click for Details
非球面レンズの参考図。有効焦点距離は後側主平面からの距離で定義されますが、この主平面はレンズのエッジ部分とは必ずしも一致しませんのでご注意ください。
Zemaxファイル |
---|
下の型番横の赤いアイコンをクリックすると各製品のZemaxファイルをダウンロードできます。また、こちらからは当社の全てのZemaxファイルを一括してダウンロードできます。 |
アイコン等について | |
---|---|
下記の表内にある青いInfoアイコンをクリックすると、各製品の仕様、性能プロット図、および非球面係数がご覧になれます。 |
特長
- 大口径の平凸非球面レンズ
- Ø12.5 mm、Ø25.0 mm、Ø50.0 mmをご用意
- コーティング無し、または245~420 nmの広帯域ARコーティング付き
- CNC精密研磨により高い光学性能を実現
- 高効率の照明などに有効
当社の精密非球面レンズはコンピュータ数値制御(CNC)により研削・研磨加工されています。CNC研磨することで、光学面のイレギュラリティや平面度、焦点距離の偏差といった点で成形非球面レンズよりも優れています。CNC加工機を使用することで、高い性能を有する大口径(10 mm以上)の非球面レンズを製造することが可能になります。非球面レンズの参考図は右側をご覧ください。
このページでご紹介しているレンズはUV 溶融石英製で、Ø12.5 mm、 Ø25.0 mmおよびØ50.0 mmのサイズをご用意しています。開口数(NA)が0.65と大きくF値が0.87と小さいため、高効率の照明用のほか、ランプやLEDのような光源からの光をコリメートする用途などに適しています。当社の非球面コンデンサーレンズに比べると、これらのレンズはより優れた表面品質を有しており、またUV(紫外)域で高い透過率が得られます。UV溶融石英(UVFS)は深紫外(DUV)域まで高い透過率を有し、自己蛍光性は実質的にゼロ(193 nmで計測)で熱膨張係数も小さいため、UV域から近赤外(NIR)域までの用途に適しています。
当社では、このレンズを取り付ける際に便利なSM05、SM1、SM2ネジ付きの厚型固定リングもご用意しています。これらを用いるとスパナレンチ用の隙間を確保できます(詳細は「レンズ取付けガイド」タブをご参照ください)。
ARコーティングのオプション
コーティング無しのUV溶融石英(UVFS)レンズはUV域において優れた性能を発揮しますが、反射防止コーティング付きのレンズをお選びいただくと透過率はさらに向上します。当社の広帯域反射防止(BBAR)UVコーティングの245~420 nmにおける平均反射率は、1面あたり0.5%未満です。
光学性能の検査
各レンズには厳格な検査が実施されています。当社では、Zygo社のGPI™干渉計を使用して、レンズ光学面の3次元マップを作製しています。また、Taylor Hobson社の形状測定装置LUPHOScanを使用して、非接触で非球面の特性評価を行います。こうした検査機能によって、仕様を高い信頼性で測定・維持することが可能になっています。詳細については「計測」タブをご参照ください。
カスタム非球面レンズ
CNC研磨非球面レンズの製造は、当社の米国ニュージャージ州にある本社の製造施設で行っています。当社の光学素子部門は幅広い製造能力を有し、組み込み用途(OEM用途)や一回限りの少量生産などのために、様々なカスタム光学素子を提供することができます。レンズについては直径、焦点距離、基板材料、コーティング、マウント方法などについてはカスタマイズ可能です。詳細については、「カスタム製造」 タブをご覧ください。また、ご不明な点はお気軽に当社までお問い合わせください。
その他のCNC研磨非球面レンズ
当社では、このページでご紹介しているレンズよりもNAが小さく、より優れた表面品質と厳しい公差を有するCNC研磨UV溶融石英(UVFS)非球面レンズを、マウント無しおよびマウント付きでご提供しています。 さらに、N-BK7製またはS-LAH64製のCNC研磨非球面レンズも、マウント無しおよびマウント付きでご用意しています。さまざまな直径と焦点距離のレンズをご用意しており、このページでご紹介している高精度レンズと同様の工程で製造されています。精密非球面レンズのラインナップについては、右のSelection Guideの表をご覧ください。
MRF研磨非球面レンズ
当社では、波面誤差が非常に小さく、回折限界性能を有するMRF研磨非球面レンズもご用意しております。これらのレンズは球面収差がなく、多くの軸上での用途に適したレンズです。
Forbesの非球面レンズ設計のための式
このページでご紹介しているレンズは、Forbesの非球面レンズの式を使用して設計されています。従来の非球面レンズの式には、意味のある正規化が不可能な多項式展開が含まれており、レンズ表面を合理的に近似するために多くの係数が必要です。この多項式の集合は直交もしていません。つまり、個々の項は互いに影響し合い、多項式次数の全数が多項式の各係数に影響します。以下のForbesの非球面レンズの式では、シフトされたJacobi多項式に基づくQ多項式と呼ばれる新しい基底関数の集合を導入することにより、これらの問題に対処しています。Q多項式は、回転対称の非球面形状を表す直交多項式のセットです。これで係数が正規化され、表面形状の寄与の大きさが係数自体に直接反映されます。最初の5つのQ多項式は以下のように定義されています。
- 正の半径は、曲率中心がレンズの右側にあることを示しています。
- 負の半径は、曲率中心がレンズの左側にあることを示しています。
Forbesの非球面レンズの式
Definitions of Variables | |
---|---|
z | Sag (Surface Profile) |
R | Radius of Curvature (mm) |
k | Conic Constant |
u | Normalized Aperture |
ρmax | Maximum Semi-Aperture |
Qconm | Shifted Jacobi Polynomials |
am | mth Order Aspheric Coefficient |
非球面レンズの計測
主な特長
- 全てのCNC研磨非球面レンズをインプロセス計測
- 非接触干渉等による表面形状計測
- 組み込み用(OEM用)の製品やカスタム品に対してテストデータシートの提供が可能
Click to Enlarge
Zygo社製Verifire™非球面干渉測定ワークステーション
Click to Enlarge
Zygo社製Verifire™非球面干渉計での測定結果
CNCレンズの仕様に常に合致するよう、当社では様々な精密計測装置を用いてレンズの形状、表面粗さ、および透過波面誤差をインプロセスで測定しています。まず、非接触型のZygo社製Verifire™ Asphere非球面干渉計を使用してレンズの表面プロファイルを検査します。この装置は、参照平面または球面(ISO 10110-12基準に準拠)と測定対象の光学素子の間の距離を変化させることで、フィゾー干渉計として動作します。ここでは各光学素子表面からの反射光により発生した干渉縞を解析することで、非球面プロファイルの低空間周波数成分を測定することができます。この装置は優れた3次元精度を有するため、主に回折限界の非球面検査に使用されています。
Zygo社製Verifire™干渉計(λ = 633 nm)によるイレギュラリティの測定例を以下に示します。参照面の表面プロファイルと完成品のプロファイルが一致しない点では干渉縞が見られます。レンズの有効径(22 mm)以上の範囲で比較的滑らかなプロファイルが得られており(左下のグラフ参照)、これはサジッタ偏差およびイレギュラリティが非常に小さいことを示しています。ここでテストしたレンズのRMSイレギュラリティは有効径の全範囲で0.428フリンジと非常に小さい値を示しており、またレンズの中心付近ではさらに良い値になっています。
光学素子の高空間周波数成分の表面粗さをZygo社製Zygo NewView™白色干渉計を用いて測定し、上記の測定を補足しています。この干渉計は片方のアームに参照面を、もう一方のアームに非球面光学素子を取り付けて動作させます。片方のアームの長さを変えることで、光学表面のより微細な情報を有する白色光インターフェログラムが得られます。光学素子の表面プロファイルの精度確認が終了したら、Zygo社製GPI LC™干渉計を用いてレンズの透過波面誤差を測定します。この測定では、光学素子に欠陥がないこと、およびレンズの裏面がフラットであることを確認します。
測定能力を向上させるために、表面形状測定機Taylor Hobson PGI Dimension 5XLも備えています。これは小さな触針を光学素子の表面に沿って移動させる接触式の精密な測定装置で、多様な表面プロファイルの特性評価を行うことができます。この方法は幅広い用途に適用でき、干渉計測には適さない高NAや大口径の光学素子にも利用できます。このように、当社では他の光学素子メーカの製品よりも優れたカスタム仕様の非球面レンズを製造することが可能です。この装置は、主に非球面研削のインプロセス計測に使用されます。
すべての装置が使用されている一方で、形状測定機Taylor Hobson LUPHOScanが計測の大部分に利用されてきました。この非接触の表面形状測定機は干渉計方式で、高精度で再現性の高い3次元表面測定を行います。この装置では、速度と精度を独自にバランスさせることで、非球面レンズの半径とイレギュラリティについての測定データが得られます。
干渉測定と接触測定を併用し、すべてのCNC研磨非球面レンズの3次元データ一式を作成しています。当社では、この詳細な品質管理情報を用いて高品質の非球面レンズを製造し、信頼性の高い製品仕様を維持しています。
Click to Enlarge
非球面レンズの表面形状測定を行うPGI Dimension 5XL
Click to Enlarge
表面形状測定機PGI Dimension 5XLを使用することで、装置の左側にあるような大口径で高NAの非球面レンズの製造が可能になっています。
カスタム仕様の非球面レンズ
主な特長
- カスタム化可能な仕様:レンズ径、焦点距離、基板、コーティングおよび取付けオプション
- 標準品のレンズよりも優れた仕様と厳しい公差にも対応
- OEMや小ロットの特注にも対応
Click to Enlarge
アメリカ、ニュージャージ州ニュートンの製造施設で製造された、研磨前の非球面レンズ
当社施設内で製造するため、様々なカスタム仕様のCNC研磨およびMRF研磨の非球面レンズがご提供可能です。 お客様の用途に合わせた特殊な性能要件に対応できるよう、直径、焦点距離、共役比、基板材質およびコーティングは全てカスタマイズ可能です。また、当社の標準品よりも厳しい公差とより優れた仕様でのご注文も承ります。カスタム仕様のレンズは、当社の垂直統合された製造工程により、OEM販売用のご注文にも、あるいは小ロットでのご注文にも対応可能です。
非球面レンズの製造用に、当社ではSatisloh社製研削機および研磨機を備えたCNCセル、低波面誤差研磨用のQED Technologies社製 Q-flex 100、芯出しおよびカスタム形状用のSatisloh社製C-25Lを保有しております。この研削機および研磨機により、直径2 mm~150 mmの球面レンズ、非球面レンズの両方を製造可能です(これよりも大きな径については当社までご相談ください)。芯出し機では、5 arcsecond以下の芯出しが可能です。これは当社のほとんどの標準品のレンズの公差よりも大幅に厳しくなっており、この設備はカスタム形状の光学素子を製造する際にも使用されます。
標準仕様製品のカスタマイズ化に要する納期や、特殊形状および長焦点距離を有する光学素子の納期、カスタマイズ製品についての詳細やお見積りのご依頼も当社までご連絡ください。
Click to Enlarge
標準品の非球面光学素子およびカスタム形状レンズ用のSatisloh社製芯出し機
Click to Enlarge
非球面レンズ用のSatisloh社製研削機
Click to Enlarge
QED Technologies社製MRF(磁気粘弾性流体研磨)研磨機
当社のエンジニアがお客様の用途に応じた光学素子の製造をお手伝いいたします。
小ロットの特注品にも対応いたします。
カスタマイズについての詳細は当社までお問い合わせください。
当社の固定リングはマウント無しの光学素子をレンズチューブまたは光学マウント内に固定します。リングの位置固定には対応するスパナレンチを使用します。平面光学素子や曲率が低い光学素子用には黒アルマイト製の固定リングをØ5 mm~Ø101.6 mm(Ø4インチ)まで標準品としてご用意しております。曲率が高い光学素子用には、厚みのある固定リングをØ12.7 mm(Ø1/2インチ)、Ø25.4 mm(Ø1インチ)、Ø50.8 mm(Ø2インチ)でご用意しております。
厚みのある固定リングは非球面レンズ、短焦点距離の平凸レンズ、コンデンサーレンズなど、曲率が高い光学素子の取り付けに使用します。右の動画のように通常の固定リングを曲率が高い光学素子に使用した場合、スパナレンチのガイドフランジが光学素子の表面に接触し、光学素子を傷つける可能性があります。また、スパナレンチと固定リングの間に隙間ができるため、固定リングが正しく締め付けられません。厚みのある固定リングは、スパナレンチが光学素子の表面に接触することなくレンズを固定させることができます。
Damage Threshold Specifications | |
---|---|
Coating Designation (Item # Suffix) | Damage Threshold |
-UV | 5.0 J/cm2 at 355 nm, 10 ns, 10 Hz, Ø0.350 mm |
当社のUV溶融石英(UVFS)製の高NA非球面レンズの損傷閾値データ
右の仕様は当社のARコーティング付き高NA溶融石英非球面レンズの測定値です。コーティングの種類が同じミラーの損傷閾値は、光学素子のサイズに関わらず全て同じです。
レーザによる損傷閾値について
このチュートリアルでは、レーザ損傷閾値がどのように測定され、使用する用途に適切な光学素子の決定にその値をどのようにご利用いただけるかを総括しています。お客様のアプリケーションにおいて、光学素子を選択する際、光学素子のレーザによる損傷閾値(Laser Induced Damage Threshold :LIDT)を知ることが重要です。光学素子のLIDTはお客様が使用するレーザの種類に大きく依存します。連続(CW)レーザは、通常、吸収(コーティングまたは基板における)によって発生する熱によって損傷を引き起こします。一方、パルスレーザは熱的損傷が起こる前に、光学素子の格子構造から電子が引き剥がされることによって損傷を受けます。ここで示すガイドラインは、室温で新品の光学素子を前提としています(つまり、スクラッチ&ディグ仕様内、表面の汚染がないなど)。光学素子の表面に塵などの粒子が付くと、低い閾値で損傷を受ける可能性があります。そのため、光学素子の表面をきれいで埃のない状態に保つことをお勧めします。光学素子のクリーニングについては「光学素子クリーニングチュートリアル」をご参照ください。
テスト方法
当社のLIDTテストは、ISO/DIS 11254およびISO 21254に準拠しています。
初めに、低パワー/エネルギのビームを光学素子に入射します。その光学素子の10ヶ所に1回ずつ、設定した時間(CW)またはパルス数(決められたprf)、レーザを照射します。レーザを照射した後、倍率約100倍の顕微鏡を用いた検査で確認し、すべての確認できる損傷を調べます。特定のパワー/エネルギで損傷のあった場所の数を記録します。次に、そのパワー/エネルギを増やすか減らすかして、光学素子にさらに10ヶ所レーザを照射します。このプロセスを損傷が観測されるまで繰返します。損傷閾値は、光学素子が損傷に耐える、損傷が起こらない最大のパワー/エネルギになります。1つのミラーBB1-E02の試験結果は以下のようなヒストグラムになります。
上の写真はアルミニウムをコーティングしたミラーでLIDTテストを終えたものです。このテストは、損傷を受ける前のレーザのエネルギは0.43 J/cm2 (1064 nm、10 ns pulse、 10 Hz、Ø1.000 mm)でした。
Example Test Data | |||
---|---|---|---|
Fluence | # of Tested Locations | Locations with Damage | Locations Without Damage |
1.50 J/cm2 | 10 | 0 | 10 |
1.75 J/cm2 | 10 | 0 | 10 |
2.00 J/cm2 | 10 | 0 | 10 |
2.25 J/cm2 | 10 | 1 | 9 |
3.00 J/cm2 | 10 | 1 | 9 |
5.00 J/cm2 | 10 | 9 | 1 |
試験結果によれば、ミラーの損傷閾値は 2.00 J/cm2 (532 nm、10 ns pulse、10 Hz、 Ø0.803 mm)でした。尚、汚れや汚染によって光学素子の損傷閾値は大幅に低減されるため、こちらの試験はクリーンな光学素子で行っています。また、特定のロットのコーティングに対してのみ試験を行った結果ではありますが、当社の損傷閾値の仕様は様々な因子を考慮して、実測した値よりも低めに設定されており、全てのコーティングロットに対して適用されています。
CWレーザと長パルスレーザ
光学素子がCWレーザによって損傷を受けるのは、通常バルク材料がレーザのエネルギを吸収することによって引き起こされる溶解、あるいはAR(反射防止)コーティングのダメージによるものです[1]。1 µsを超える長いパルスレーザについてLIDTを論じる時は、CWレーザと同様に扱うことができます。
パルス長が1 nsと1 µs の間のときは、損傷は吸収、もしくは絶縁破壊のどちらかで発生していると考えることができます(CWとパルスのLIDT両方を調べなければなりません)。吸収は光学素子の固有特性によるものか、表面の不均一性によるものかのどちらかによって起こります。従って、LIDTは製造元の仕様以上の表面の質を有する光学素子にのみ有効です。多くの光学素子は、ハイパワーCWレーザで扱うことができる一方、アクロマティック複レンズのような接合レンズやNDフィルタのような高吸収光学素子は低いCWレーザ損傷閾値になる傾向にあります。このような低い損傷閾値は接着剤や金属コーティングにおける吸収や散乱によるものです。
繰返し周波数(prf)の高いパルスレーザは、光学素子に熱的損傷も引き起こします。この場合は吸収や熱拡散率のような因子が深く関係しており、残念ながらprfの高いレーザが熱的影響によって光学素子に損傷を引き起こす場合の信頼性のあるLIDTを求める方法は確立されておりません。prfの大きいビームでは、平均出力およびピークパワーの両方を等しいCW出力と比較する必要があります。また、非常に透過率の高い材料では、prfが上昇してもLIDTの減少は皆無かそれに近くなります。
ある光学素子の固有のCWレーザの損傷閾値を使う場合には、以下のことを知る必要があります。
- レーザの波長
- ビーム径(1/e2)
- ビームのおおよその強度プロファイル(ガウシアン型など)
- レーザのパワー密度(トータルパワーをビームの強度が1/e2の範囲の面積で割ったもの)
ビームのパワー密度はW/cmの単位で計算します。この条件下では、出力密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません(右グラフ参照)。平均線形パワー密度は、下の計算式で算出できます。
ここでは、ビーム強度プロファイルは一定であると仮定しています。次に、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときはビームの強度が1/e2の2倍のパワー密度を有します(右下図参照)。
次に、光学素子のLIDTの仕様の最大パワー密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です。おおよその目安として参考にできるのは、損傷閾値は波長に対して比例関係であるということです。短い波長で使う場合、損傷閾値は低下します(つまり、1310 nmで10 W/cmのLIDTならば、655 nmでは5 W/cmと見積もります)。
この目安は一般的な傾向ですが、LIDTと波長の関係を定量的に示すものではありません。例えば、CW用途では、損傷はコーティングや基板の吸収によってより大きく変化し、必ずしも一般的な傾向通りとはなりません。上記の傾向はLIDT値の目安として参考にしていただけますが、LIDTの仕様波長と異なる場合には当社までお問い合わせください。パワー密度が光学素子の補正済みLIDTよりも小さい場合、この光学素子は目的の用途にご使用いただけます。
当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社は個別の情報やテスト結果の証明書を発行することもできます。損傷解析は、類似した光学素子を用いて行います(お客様の光学素子には損傷は与えません)。試験の費用や所要時間などの詳細は、当社までお問い合わせください。
パルスレーザ
先に述べたように、通常、パルスレーザはCWレーザとは異なるタイプの損傷を光学素子に引き起こします。パルスレーザは損傷を与えるほど光学素子を加熱しませんが、光学素子から電子をひきはがします。残念ながら、お客様のレーザに対して光学素子のLIDTの仕様を照らし合わせることは非常に困難です。パルスレーザのパルス幅に起因する光学素子の損傷には、複数の形態があります。以下の表中のハイライトされた列は当社の仕様のLIDT値が当てはまるパルス幅に対する概要です。
パルス幅が10-9 sより短いパルスについては、当社の仕様のLIDT値と比較することは困難です。この超短パルスでは、多光子アバランシェ電離などのさまざまなメカニクスが損傷機構の主流になります[2]。対照的に、パルス幅が10-7 sと10-4 sの間のパルスは絶縁破壊、または熱的影響により光学素子の損傷を引き起こすと考えられます。これは、光学素子がお客様の用途に適しているかどうかを決定するために、レーザービームに対してCWとパルス両方による損傷閾値を参照しなくてはならないということです。
Pulse Duration | t < 10-9 s | 10-9 < t < 10-7 s | 10-7 < t < 10-4 s | t > 10-4 s |
---|---|---|---|---|
Damage Mechanism | Avalanche Ionization | Dielectric Breakdown | Dielectric Breakdown or Thermal | Thermal |
Relevant Damage Specification | No Comparison (See Above) | Pulsed | Pulsed and CW | CW |
お客様のパルスレーザに対してLIDTを比較する際は、以下のことを確認いただくことが重要です。
- レーザの波長
- ビームのエネルギ密度(トータルエネルギをビームの強度が1/e2の範囲の面積で割ったもの)
- レーザのパルス幅
- パルスの繰返周波数(prf)
- 実際に使用するビーム径(1/e2 )
- ビームのおおよその強度プロファイル(ガウシアン型など)
ビームのエネルギ密度はJ/cm2の単位で計算します。右のグラフは、短パルス光源には、エネルギ密度が適した測定量であることを示しています。この条件下では、エネルギ密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません。ここでは、ビーム強度プロファイルは一定であると仮定しています。ここで、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときは一般にビームの強度が1/e2のときの2倍のパワー密度を有します。
次に、光学素子のLIDTの仕様と最大エネルギ密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です[3]。経験則から、損傷閾値は波長に対して以下のような平方根の関係であるということです。短い波長で使う場合、損傷閾値は低下します(例えば、1064 nmで 1 J/cm2のLIDTならば、532 nmでは0.7 J/cm2と計算されます)。
波長を補正したエネルギ密度を得ました。これを以下のステップで使用します。
ビーム径は損傷閾値を比較する時にも重要です。LIDTがJ/cm2の単位で表される場合、スポットサイズとは無関係になりますが、ビームサイズが大きい場合、LIDTの不一致を引き起こす原因でもある不具合が、より明らかになる傾向があります[4]。ここで示されているデータでは、LIDTの測定には<1 mmのビーム径が用いられています。ビーム径が5 mmよりも大きい場合、前述のようにビームのサイズが大きいほど不具合の影響が大きくなるため、LIDT (J/cm2)はビーム径とは無関係にはなりません。
次に、パルス幅について補正します。パルス幅が長くなるほど、より大きなエネルギに光学素子は耐えることができます。パルス幅が1~100 nsの場合の近似式は以下のようになります。
お客様のレーザのパルス幅をもとに、光学素子の補正されたLIDTを計算するのにこの計算式を使います。お客様の最大エネルギ密度が、この補正したエネルギ密度よりも小さい場合、その光学素子はお客様の用途でご使用いただけます。ご注意いただきたい点は、10-9 s と10-7 sの間のパルスにのみこの計算が使えることです。パルス幅が10-7 sと10-4 sの間の場合には、CWのLIDTも調べなければなりません。
当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社では個別のテスト情報やテスト結果の証明書を発行することも可能です。詳細は、当社までお問い合わせください。
[1] R. M. Wood, Optics and Laser Tech. 29, 517 (1998).
[2] Roger M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, Philadelphia, PA, 2003).
[3] C. W. Carr et al., Phys. Rev. Lett. 91, 127402 (2003).
[4] N. Bloembergen, Appl. Opt. 12, 661 (1973).
レーザーシステムが光学素子に損傷を引き起こすかどうか判断するプロセスを説明するために、レーザによって引き起こされる損傷閾値(LIDT)の計算例をいくつかご紹介します。同様の計算を実行したい場合には、右のボタンをクリックしてください。計算ができるスプレッドシートをダウンロードいただけます。ご使用の際には光学素子のLIDTの値と、レーザーシステムの関連パラメータを緑の枠内に入力してください。スプレッドシートでCWならびにパルスの線形パワー密度、ならびにパルスのエネルギ密度を計算できます。これらの値はスケーリング則に基づいて、光学素子のLIDTの調整スケール値を計算するのに用いられます。計算式はガウシアンビームのプロファイルを想定しているため、ほかのビーム形状(均一ビームなど)には補正係数を導入する必要があります。 LIDTのスケーリング則は経験則に基づいていますので、確度は保証されません。なお、光学素子やコーティングに吸収があると、スペクトル領域によってLIDTが著しく低くなる場合があります。LIDTはパルス幅が1ナノ秒(ns)未満の超短パルスには有効ではありません。
ガウシアンビームの最大強度は均一ビームの約2倍です。
CWレーザの例
波長1319 nm、ビーム径(1/e2)10 mm、パワー0.5 Wのガウシアンビームを生成するCWレーザーシステム想定します。このビームの平均線形パワー密度は、全パワーをビーム径で単純に割ると0.5 W/cmとなります。
しかし、ガウシアンビームの最大パワー密度は均一ビームの約2倍です(右のグラフ参照)。従って、システムのより正確な最大線形パワー密度は1 W/cmとなります。
アクロマティック複レンズAC127-030-CのCW LIDTは、1550 nmでテストされて350 W/cmとされています。CWの損傷閾値は通常レーザ光源の波長に直接スケーリングするため、LIDTの調整値は以下のように求められます。
LIDTの調整値は350 W/cm x (1319 nm / 1550 nm) = 298 W/cmと得られ、計算したレーザーシステムのパワー密度よりも大幅に高いため、この複レンズをこの用途に使用しても安全です。
ナノ秒パルスレーザの例:パルス幅が異なる場合のスケーリング
出力が繰返し周波数10 Hz、波長355 nm、エネルギ1 J、パルス幅2 ns、ビーム径(1/e2)1.9 cmのガウシアンビームであるNd:YAGパルスレーザーシステムを想定します。各パルスの平均エネルギ密度は、パルスエネルギをビームの断面積で割って求めます。
上で説明したように、ガウシアンビームの最大エネルギ密度は平均エネルギ密度の約2倍です。よって、このビームの最大エネルギ密度は約0.7 J/cm2です。
このビームのエネルギ密度を、広帯域誘電体ミラーBB1-E01のLIDT 1 J/cm2、そしてNd:YAGレーザーラインミラーNB1-K08のLIDT 3.5 J/cm2と比較します。LIDTの値は両方とも、波長355 nm、パルス幅10 ns、繰返し周波数10 Hzのレーザで計測しました。従って、より短いパルス幅に対する調整を行う必要があります。 1つ前のタブで説明したようにナノ秒パルスシステムのLIDTは、パルス幅の平方根にスケーリングします:
この調整係数により広帯域誘電体ミラーBB1-E01のLIDTは0.45 J/cm2に、Nd:YAGレーザーラインミラーのLIDTは1.6 J/cm2になり、これらをビームの最大エネルギ密度0.7 J/cm2と比較します。広帯域ミラーはレーザによって損傷を受ける可能性があり、より特化されたレーザーラインミラーがこのシステムには適していることが分かります。
ナノ秒パルスレーザの例:波長が異なる場合のスケーリング
波長1064 nm、繰返し周波数2.5 Hz、パルスエネルギ100 mJ、パルス幅10 ns、ビーム径(1/e2)16 mmのレーザ光を、NDフィルタで減衰させるようなパルスレーザーシステムを想定します。これらの数値からガウシアン出力における最大エネルギ密度は0.1 J/cm2になります。Ø25 mm、OD 1.0の反射型NDフィルタ NDUV10Aの損傷閾値は355 nm、10 nsのパルスにおいて0.05 J/cm2で、同様の吸収型フィルタ NE10Aの損傷閾値は532 nm、10 nsのパルスにおいて10 J/cm2です。1つ前のタブで説明したように光学素子のLIDTは、ナノ秒パルス領域では波長の平方根にスケーリングします。
スケーリングによりLIDTの調整値は反射型フィルタでは0.08 J/cm2、吸収型フィルタでは14 J/cm2となります。このケースでは吸収型フィルタが光学損傷を防ぐには適した選択肢となります。
マイクロ秒パルスレーザの例
パルス幅1 µs、パルスエネルギ150 µJ、繰返し周波数50 kHzで、結果的にデューティーサイクルが5%になるレーザーシステムについて考えてみます。このシステムはCWとパルスレーザの間の領域にあり、どちらのメカニズムでも光学素子に損傷を招く可能性があります。レーザーシステムの安全な動作のためにはCWとパルス両方のLIDTをレーザーシステムの特性と比較する必要があります。
この比較的長いパルス幅のレーザが、波長980 nm、ビーム径(1/e2)12.7 mmのガウシアンビームであった場合、線形パワー密度は5.9 W/cm、1パルスのエネルギ密度は1.2 x 10-4 J/cm2となります。これをポリマーゼロオーダ1/4波長板WPQ10E-980のLIDTと比較してみます。CW放射に対するLIDTは810 nmで5 W/cm、10 nsパルスのLIDTは810 nmで5 J/cm2です。前述同様、光学素子のCW LIDTはレーザ波長と線形にスケーリングするので、CWの調整値は980 nmで6 W/cmとなります。一方でパルスのLIDTはレーザ波長の平方根とパルス幅の平方根にスケーリングしますので、1 µsパルスの980 nmでの調整値は55 J/cm2です。光学素子のパルスのLIDTはパルスレーザのエネルギ密度よりはるかに大きいので、個々のパルスが波長板を損傷することはありません。しかしレーザの平均線形パワー密度が大きいため、高出力CWビームのように光学素子に熱的損傷を引き起こす可能性があります。
Posted Comments: | |
Ruizhe Lyu
 (posted 2022-08-26 17:01:43.207) Dear Sir/Madam,
I would like to ask about the product ASL1210:
1. Is the uncoated lens appliable to 905nm? If it is, how much it is to add a B-coating.
2. If the lens is not appliable to 905nm, how much does it cost to order lens with the same modle with B-coating, but made from BK7 or similar glass.
Looking forward to hearing from you. ksosnowski
 (posted 2022-08-30 04:23:46.0) Thanks for reaching out to Thorlabs. ASL1210 can be used at 905nm with roughly .33mm focal shift and with similar transmission to the visible spectrum. Some of the other specs will shift slightly at this wavelength as well. The AL1210-B is our closest alternative, using S-LAH64 and with NA=0.55, and there would be less than 0.1mm focal shift from the 780nm design wavelength. I have reached out directly to discuss this application further. |