フォトダイオード(PD)


  • Si, Black Si, Dual Band (Si/InGaAs), Ge, and InGaAs Detectors Available
  • Available in TO Can, FC Connector, and Flat Wafer Body Styles
  • Available in Hermetically Sealed Packages

DSD2

FDS10X10

FDG05

FGA01

FGA01FC

FDG03

FGA21

Front

Back

Related Items


Please Wait
Mounted and Unmounted Detectors
Unmounted Photodiodes (200 - 2600 nm)
Calibrated Photodiodes (350 - 1800 nm)
Mounted Photodiodes (200 - 1800 nm)
Thermopile Detectors (0.2 - 15 µm)
Photovoltaic Detectors (2.0 - 10.6 µm)
Pigtailed Photodiodes (320 - 1000 nm)

特長

  • Si、ブラックシリコン(Si)、デュアルバンド(Si/InGaAs)、Ge、InGaAsのフォトダイオード(マウント無し)をご用意
  • 波長範囲:200~2600 nm
  • SiフォトダイオードFDS100は、5、10、50個入りパックの製品もご用意

当社では、さまざまな受光面サイズやパッケージのPIN接合型フォトダイオード(PD)を標準品として取り揃えています。PIN接合型フォトダイオードのラインナップにはシリコン(Si)インジウムガリウムヒ素(InGaAs)が含まれます。また、N-on-P構造のゲルマニウム(Ge)もございます。

これらの中で最も高速なフォトダイオードはSiフォトダイオードのFDS015、FDS02、FDS025です。SiフォトダイオードFDS015は立ち上がり時間が35 ps、接合静電容量が0.65 pFで、下記でご紹介している中で最も高速かつ最も低い静電容量のフォトダイオードです。また、SiフォトダイオードFD11Aの暗電流は2 pAで、当社のフォトダイオードの中で最も小さいものになっております。DSD2はデュアルバンドフォトダイオードで、2つのフォトディテクタが重ねられており(InGaAS基板の上にSi基板)、波長範囲は2つの組み合わせにより400~1700 nmです。FD05DとFD10Dは900~2600 nmで感度が高いInGaAsフォトダイオードで、一般的なInGaAsフォトダイオードの長波長側感度域が~1800 nmであるのに対し、より長波長側まで伸びています。 

フォトダイオード製品のラインナップに加えて、マウント付きフォトダイオードと豊富な種類のフォトダイオード用ソケットもご用意しております。なお下記のフォトダイオードは校正されていませんのでご注意ください。そのため製造ロットによって感度が若干異なる場合があります。詳細は「感度の変動」のタブをご参照ください。当社では感度のばらつきを補正した、NISTトレーサブルな校正済みフォトダイオードもご用意しております。当社の多くのフォトダイオードは、DCバイアスモジュールPBM42で逆バイアス電圧をかけることができ、光パワーのより高速かつより高感度での検出が可能です。

フォトダイオードの飽和限界、ノイズフロア、受光面の均一性(または感度のばらつき)、暗電流の温度依存特性などに関して、当社が実施した実験の結果を「実験データ」タブでご覧いただくことができます。また、そちらのタブでは当社のフォトダイオードの仕様を決める際に用いる理論や方法の概要についても述べています。例えば「ノイズ等価電力(NEP)の温度依存特性」では、NEPの値がショットノイズと熱ノイズによって定義される背景が書かれています。ゼロバイアス(光起電力モード)においては、NEPはフォトダイオードのシャント抵抗によって生じる熱ノイズのみで決定されます。一方、「フォトダイオードチュートリアル」タブでは、フォトダイオードの動作、関連用語そして理論など一般的な情報がご覧いただけます。

なお、受光面のエッジ部分の不均一性により不要な静電容量や抵抗が発生し、フォトダイオードの時間領域での応答を歪ませる場合があります。このような現象を防ぐために、光はフォトダイオードの受光面の中心に入射することをお勧めしています。これはディテクタの前に集光レンズピンホールを配置することで実現できます。

当社では、Siフォトダイオードの応答の一様性を向上させることができるスペクトル特性平坦化フィルタもご用意しております。詳細はこちらのページをご覧ください。

個別のフォトダイオードの感度特性はロットごとに異なります。 したがって、お届けしたフォトダイオードの感度特性は下記掲載の値とわずかに異なる場合がございます。 例えば右のグラフは、フォトダイオードFDS1010の感度特性が変動する範囲を示しています。 このデータは104個のフォトダイオードから収集したものです。 各データポイントにおいて感度特性の最大値、平均値、および最小値を計算し、プロットしています。

個別のフォトダイオードの、典型的な分光感度特性は、下記の製品仕様表内のInfo ボタンをクリックするとご覧いただけます。

フォトダイオードのチュートリアル

動作原理

接合型フォトダイオードは、通常の信号ダイオードと似た動作をする部品ですが、接合半導体の空乏層が光を吸収すると、光電流を生成する性質があります。フォトダイオードは、高速なリニアデバイスで、高い量子効率を達成し、様々な用途で利用することが可能です。

入射光の強度に応じた、出力電流レベルと受光感度を正確に把握することが必要とされます。図1は、接合型フォトダイオードのモデル図で、基本的な部品要素が図示されており、フォトダイオードの動作原理が説明されています。

 

Equation 1
Photodiode Circuit Diagram
図1:フォトダイオードの概略図 

フォトダイオード関連用語

受光感度
フォトダイオードの受光感度は、規定の波長における、生成光電流 (IPD)と入射光パワー(P)の比であると定義できます。

Equation 2

Photoconductiveモード(光導電モード)とPhotovoltaicモード(光起電力モード)
フォトダイオードは、Photoconductiveモード(逆バイアス) またはPhotovoltaicモード(ゼロバイアス)で動作できます。 モードの選択は、使用用途で求められる速度と、許容される暗電流(漏れ電流)の量で決まります。

Photoconductiveモード(光導電モード)
Photoconductiveモードでは、逆バイアスが印加されますが、これが当社のDETシリーズディテクタの基本です。回路で測定できる電流量はフォトダイオードに照射される光の量を反映します。つまり、測定される出力電流は、入射される光パワーに対しリニアに比例します。逆バイアスを印加すると、空乏層を広げて反応領域が広くなるため、接合容量が小さくなり、良好な線形応答が得られます。このような動作条件下では、暗電流が大きくなりがちですが、フォトダイオードの種類を選ぶことで、暗電流を低減することもできます。(注:当社のDETディテクタは逆バイアスで、順方向バイアスでは動作できません。)

Photovoltaicモード(光起電力モード)
Photovoltaicモードでは、フォトダイオードはゼロバイアスで使用されます。デバイスからの電流の流れが制限されると電位が上昇します。このモードでは光起電力効果が引き起こされますが、これが太陽電池の基本です。Photovoltaicモードでは、暗電流は小さくなります。

暗電流
暗電流とは、フォトダイオードにバイアス電圧が付加されている時に流れる漏れ電流です。Photoconductiveモードで使用する場合に暗電流の値は高くなりがちで、温度の影響も受けます。 暗電流は、温度が10°C上昇するごとに約2倍となり、シャント抵抗は6°C の上昇に伴い倍になります。高いバイアスを付加すれば、接合容量は小さくなりますが、暗電流の量は増大してしまいます。

暗電流の量はフォトダイオードの材料や検出部の寸法によっても左右されます。ゲルマニウム製のデバイスでは暗電流は高くなり、それと比較するとシリコン製のデバイスは一般的には低い暗電流となります。下表では、いくつかのフォトダイオードに使用される材料の暗電流の量と共に、速度、感度とコストを比較しています。

MaterialDark CurrentSpeedSpectral RangeCost
Silicon (Si)LowHigh SpeedVisible to NIRLow
Germanium (Ge)HighLow SpeedNIRLow
Gallium Phosphide (GaP)LowHigh SpeedUV to VisibleModerate
Indium Gallium Arsenide (InGaAs)LowHigh SpeedNIRModerate
Indium Arsenide Antimonide (InAsSb)HighLow SpeedNIR to MIRHigh
Extended Range Indium Gallium Arsenide (InGaAs)HighHigh SpeedNIRHigh
Mercury Cadmium Telluride (MCT, HgCdTe)HighLow SpeedNIR to MIRHigh

接合容量
接合容量(Cj)は、フォトダイオードの帯域幅と応答特性に大きな影響を与えるので、フォトダイオードの重要な特性となります。ダイオードの面積が大きいと、接合容量が大きくなり、電荷容量は大きくなります。逆バイアスの用途では、接合部の空乏層が大きくなるので、接合容量が小さくなり、応答速度が速くなります。

帯域幅と応答性
負荷抵抗とフォトディテクタの接合容量により帯域幅が制限されます。最善の周波数応答を得るには、50 Ωの終端装置を50 Ωの同軸ケーブルと併用します。接合容量(Cj)と負荷抵抗値(RLOAD)により、帯域幅(fBW)と立ち上がり時間応答(tr)の概算値が得られます。

Equation 3

 

雑音等価電力
雑音等価電力(NEP:Noise Equivalent Power)とは、出力帯域幅1 Hzでの信号対雑音比(SNR)が1になる入力信号のパワーです。NEPによって、ディテクタが低レベルの光を検知する能力を知ることができるので、この数値は便利です。一般には、NEPはディテクタの検出部の面積増加に伴って大きくなり、下記の数式で求めることができます。

Photoconductor NEP

この数式において、S/Nは信号対雑音比、Δf はノイズの帯域幅で、入射エネルギ単位はW/cm2となっています。詳細は、当社のホワイトペーパー「NEP – Noise Equivalent Power」をご覧ください。

終端抵抗
オシロスコープでの測定を可能にするためには、生成された光電流を電圧(VOUT)に変換する必要がありますが、負荷抵抗を用いて電圧変換します。

Equation 4

フォトダイオードの種類によっては、負荷抵抗が応答速度に影響を与える場合があります。最大帯域幅を得るには、50 Ωの同軸ケーブルを使用して、ケーブルの反対側の終端部で50 Ωの終端抵抗器の使用を推奨しています。このようにすることで、ケーブルの特性インピーダンスとマッチングできて共鳴が最小化できます。帯域幅が重要ではない特性の場合は、RLOADを増大させることで、所定の光レベルに対して電圧を大きくすることができます。終端部が不整合の場合、同軸ケーブルの長さが応答特性に対して大きな影響を与えます。したがってケーブルはできるだけ短くしておくことが推奨されます。

シャント抵抗
シャント抵抗は、ゼロバイアスフォトダイオード接合の抵抗を表します。理想的なフォトダイオードでは、シャント抵抗は無限大となりますが、実際の数値はフォトダイオードの材料の種類によって、10Ωのレベルから 数千MΩの範囲となる場合があります。例えばInGaAsディテクタのシャント抵抗は、10 MΩのレベルですが、GeディテクタはkΩのレベルです。このことは、フォトダイオードのノイズ電流に大きく影響を与える可能性があります。しかしながらほとんどの用途では、ある程度高い抵抗値であればその影響は小さく、無視できる程度です。

直列抵抗
直列抵抗は半導体材料の抵抗値で、この低い抵抗値は、通常は無視できる程度です。直列抵抗は、フォトダイオードの接触接続部とワイヤ接続部で発生し、ゼロバイアスの条件下でのフォトダイオードのリニアリティの主な決定要因になります。

一般的な動作回路

Reverse Biased DET Circuit
図2: 逆バイアス回路(DETシリーズディテクタ)

上図の回路はDETシリーズのディテクタをモデル化したものです。ディテクタは、入射光に対して線形の応答を得るために逆バイアス状態になっています。ここで生成された光電流の量は、入射光と波長に依存し、負荷抵抗を出力端子に接続すると、オシロスコープでモニタリングできます。RCフィルタの機能は、出力に雑音を載せてしまう可能性のある供給電力からの高周波雑音のフィルタリングです。

Amplified Detector Circuit
図3: 増幅ディテクタ回路

高利得用途でアンプとともにフォトディテクタを使用できます。動作時には、PhotovoltaicモードまたはPhotoconductiveモードのいずれも選択可能です。このアクティブ回路はいくつかの利点があります。

  • Photovoltaicモード:オペアンプで、点Aと点Bの電位が同じに維持されているので、フォトダイオードでは回路全体では0 Vに保たれています。このことで暗電流は発生しなくなります。
  • Photoconductiveモード: フォトダイオードは逆バイアス状態であるので、接合容量を低下させ、帯域幅の状態を改善します。ディテクタの利得は、フィードバック素子(Rf)に依存します。ディテクタの帯域幅は、下記の数式で計算することができます。

Equation 5

GBPが利得帯域幅積で、CDは接合容量と増幅器の静電容量の和です。

チョッパ入力周波数の影響

光導電信号は時定数の応答限界までは一定となりますが、PbS、 PbSe、HgCdTe (MCT)、InAsSbなどのディテクタにおいては、1/fゆらぎ(チョッパ入力周波数が大きいほどゆらぎは小さくなる)を持つため、低い周波数の入力の場合は影響が大きくなります。

低いチョッパ入力周波数の場合は、ディテクタの受光感度は小さくなります。周波数応答や検出性能は下記の条件の場合において最大となります。

Photoconductor Chopper Equation

概要
こちらのタブでは当社が提供するフォトダイオードの性能に関して実施した実験をまとめています。それぞれのセクションごとに独立した実験について記載しており、下の各ボックスをクリックするとご覧いただけます。「フォトダイオードの飽和限界とノイズフロア」では、温度、抵抗率、逆バイアス電圧、応答特性、システムの帯域幅などがフォトダイオードの出力ノイズに与える影響を調べています。「 フォトダイオードの感度均一性」では、フォトダイオードの受光面全体をビーム径の小さな光で走査し、感度の変化を調べています。素材構成の異なるフォトダイオードについての試験を行ったほかに、ユニットごとのバラツキを調べるためにシリコン(si)ベースの1種類のモデルの8ユニットについても試験をして比較しています。「暗電流の温度特性」および「ノイズ等価パワー(NEP)の温度特性」では、暗電流およびNEPがそれぞれ温度によってどのように変化するか、そしてそれが測定結果にどのような影響を与えるかを記述しています。「ビームサイズとフォトダイオードの飽和」では、フォトダイオードの飽和点が入射光のビームサイズによってどのように変化するかを示し、それらの結果を説明するために複数の理論モデルについて調べています。「バイアス電圧」では、入射光パワーがフォトダイオードの電子回路における有効逆バイアス電圧に与える影響を調べ、その変化を予測するモデルの信頼性を検証しています。

フォトダイオードの飽和限界とノイズフロア

About Our Lab Facts
Our application engineers live the experience of our customers by conducting experiments in Alex’s personal lab. Here, they gain a greater understanding of our products’ performance across a range of application spaces. Their results can be found throughout our website on associated product pages in Lab Facts tabs. Experiments are used to compare performance with theory and explore the benefits and drawbacks of using similar products in unique setups, in an attempt to understand the intricacies and practical limitations of our products. In all cases, the theory, procedure, and results are provided to assist with your buying decisions.

パルスレーザ:パワーとエネルギーの計算

パルスレーザからの放射光が、使用するデバイスや用途に適合するかどうかを判断する上で、レーザの製造元から提供されていないパラメータを参照しなければならない場合があります。このような場合、一般には入手可能な情報から必要なパラメータを算出することが可能です。次のような場合を含めて、必要な結果を得るには、ピークパルスパワー、平均パワー、パルスエネルギ、その他の関連するパラメータを必要とすることがあります。

  • 生物試料を損傷させないように保護する
  • フォトディテクタなどのセンサにダメージを与えることなくパルスレーザ光を測定する
  • 物質内で蛍光や非線形効果を得るために励起を行う

パルスレーザ光のパラメータは下の図1および表に示します。参照用として、計算式の一覧を以下に示します。資料を ダウンロードしていただくと、これらの計算式のほかに、パルスレーザ光の概要、異なるパラメータ間の関係性、および計算式の適用例がご覧いただけます。

 

計算式

周期と繰り返し周波数は逆数の関係:   、 
平均パワーから算出するパルスエネルギ:      
パルスエネルギーから算出する平均パワー:       
パルスエネルギーから概算するピークパルスパワー:           

平均パワーから算出するピークパワー、ピークパワーから算出する平均パワー :
 
平均パワーおよびデューティーサイクルから算出するピークパワー*:
*デューティーサイクル() はレーザのパルス光が放射されている時間の割合です。
Pulsed Laser Emission Parameters
Click to Enlarge

図1: パルスレーザ光の特性を記述するためのパラメータを、上のグラフと下の表に示します。パルスエネルギ (E)は、パルス曲線の下側の黄色の領域の面積に対応します。このパルスエネルギは斜線で表された領域の面積とも一致します。

パラメータシンボル単位説明
パルスエネルギEジュール[J]レーザの1周期中に放射される1パルスの全放射エネルギ。
パルスエネルギはグラフの黄色の領域の面積に等しく、
これは斜線部分の面積とも一致します。
周期Δt 秒 [s] 1つのパルスの開始から次のパルスの開始までの時間
平均パワーPavgワット[W]パルスとして放射されたエネルギが、1周期にわたって
均一に広がっていたと仮定したときの、
光パワーの大きさ(光パワー軸上の高さ)
瞬時パワーPワット[W]特定の時点における光パワー
ピークパワーPpeakワット [W]レーザから出力される最大の瞬時パワー
パルス幅秒 [s]パルスの開始から終了までの時間。一般的にはパルス形状の
半値全幅(FWHM)を基準にしています。
パルス持続時間とも呼ばれます。
繰り返し周波数 frepヘルツ [Hz]パルス光が放射される頻度を周波数で表示した量。
周期とは逆数の関係です。

計算例

下記のパルスレーザ光を測定するのに、最大入力ピークパワーが75 mW 
のディテクタを使用するのは安全かどうかを計算してみます。

  • 平均パワー: 1 mW
  • 繰り返し周波数: 85 MHz
  • パルス幅: 10 fs

1パルスあたりのエネルギは、

と低いようですが、ピークパワーは、

となります。このピークパワーはディテクタの
最大入力ピークパワーよりも5桁ほど大きく、
従って、上記のパルスレーザ光を測定するのに
このディテクタを使用するのは安全ではありません


Posted Comments:
Wim Weltjens  (posted 2024-11-01 14:50:04.29)
Hello, I saw your new photodiode. This is a very interesting one for us, except that it is in the wrong package. What we usually do is glue a lens onto the epoxy of a ceramic package to increase the light input without having to deal with the downsides of a larger photodiode. Is it possible to get this photodiode in another package? Thanks!
ksosnowski  (posted 2024-11-04 04:58:19.0)
Hello Wim, thanks for reaching out to us. We offer WR1 as a diode can opener to de-lid TO-can packages like FDBS22. Epoxy could interfere with the performance of the nanostructured surface of the black silicon sensor by presenting a different refractive index medium and potentially increasing the surface reflection. I have reached out directly to discuss this application in further detail.
Sultan Alshaibani  (posted 2024-05-23 00:24:58.487)
Dear Sir/Madam, I hope this message finds you well. My name is Sultan Alshaibani, and I am a PhD candidate at King Abdullah University of Science and Technology (KAUST). I am currently in the process of completing my doctoral dissertation, which focuses on the development of a silicon-based photodetector. I am writing to request permission to extract data from Thorlabs' FDS010 Si-based photodetector. Specifically, I would like to include the following figure in my thesis: ---------------------------------------------------------- Figure 1: Typical responsivity spectrum of Si-based photodetector. This figures is critical to illustrating key points in my research and providing a comprehensive understanding of the subject matter. I assure you that proper attribution will be given to the original source, and the figure will be used solely for academic purposes within my dissertation. The dissertation will be submitted to KAUST's library and may be made available online for academic and research purposes. Please let me know if there are any forms or additional information required to process this request. I would be grateful for your consideration and approval. Thank you very much for your time and assistance. Best regards, Sultan Alshaibani PhD Candidate, Department of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) King Abdullah University of Science and Technology (KAUST) sultan.alshaibani@kaust.edu.sa +966 50 057 2298
cdolbashian  (posted 2024-05-28 11:32:03.0)
Thank you for reaching out to us with this inquiry and for reaching out to us to request permission to use our images in your publication. I have contacted you directly with the appropriate paperwork which will permit your use of our images.
Pokuan Shen  (posted 2024-05-22 18:56:00.003)
Dear Sir/Madam This is Pokuan Shen from AuthenX, Taiwan. I have one question regarding the FDS02. Can it support a FC/PC connector with a high NA multimode fiber Thorlabs M123L01? If so, how is the optical couplinge efficiency between the fiber and photodiode, or the responsivity of whole receiver, including photodiode and high NA fiber. Thank you. PK Shen
cdolbashian  (posted 2024-05-24 10:48:04.0)
Thank you for reaching out to us with this inquiry. These fiber-coupled diodes are designed to be used with SM fibers, as the active area is fairly small. Overfilling the area can result in slower response time and loss of signal. This may be fine depending on your application, and I have contacted you directly to discuss this.
Asger Gardner  (posted 2024-02-29 09:24:34.893)
Hello, Looking through your product range of photodiodes, I cannot seem to find any that are Silicon Carbide (SiC) based. I'm looking for these with regards to solar-blind detection of UV signals, since SiC-based detectors are sensitive in the range from 200-400 nm. Of particular interest would be avalanche photodiodes for fast response to low signals.
ksosnowski  (posted 2024-03-07 04:36:31.0)
Hello Asger, thanks for reaching out to Thorlabs. We do not currently offer any Silicon Carbide photodiodes. We previously offered some detectors with Gallium Phosphide (GaP) photodiodes however this type of diode is no longer produced and we have so far been unable to source an exact replacement for UV detection like this. Our APD130A2 avalanche detector uses UV-enhanced Silicon to provide sensitivity down to 200nm. However this would require some optical filtering to cutoff wavelengths above 400nm. I have reached out directly to discuss your application in further detail.
Hartmut Becker  (posted 2024-02-13 09:19:37.587)
The junction capacitance of FDS 100 is 24 pF. What is the value of the Sunt resistance?
cdolbashian  (posted 2024-02-16 04:24:15.0)
Thank you for the inquiry. The shunt resistance of the FDS100 is 1GOhm at room temp.
anais leproux  (posted 2024-02-12 08:50:41.523)
Hello, I would like to pair 2 photodiodes that were bought together a few years ago, model FD11A. I guess they were made from the same batch. Could you tell me about "production linearity"? I want to make sure the specs are close enough so that I can use the 2 photodiodes in a pairing configuration. Could you also tell me about any potential drift in performance (given these photodiodes were purchased about 4 years ago)? Many thanks!
cdolbashian  (posted 2024-02-13 01:40:07.0)
Thank you for reaching out to us with this inquiry. As these products are not individually characterized for lifetime or linearity, it would behoove the end user to characterize each component individually, if they are to be used in a paired-diode application. I have contacted you directly to discuss this further.
khady lo  (posted 2024-01-15 09:16:34.367)
on arrive pas à voir la tension max que peut accepter la photodiode FD05D.
ksosnowski  (posted 2024-01-16 10:59:19.0)
Hello Khady, thanks for reaching out to Thorlabs. FD05D has a max reverse bias voltage spec of 1.8V. An engineer from your local technical support team is reaching out directly for further discussions.
user  (posted 2023-12-12 23:48:05.577)
What is FDS010 window thickness (fused silica) ?
ksosnowski  (posted 2023-12-12 11:04:22.0)
Hello, thanks for reaching out to Thorlabs. The FDS010 photodiode window is 0.5mm thick quartz glass.
Takemasa Tamanuki  (posted 2023-11-27 21:00:27.57)
Regarding your product of FGA01FC (InGaAs Photodiode, 300 ps Rise Time, 800-1700 nm, Ø0.12 mm Active Area, FC/PC Bulkhead), Can this product connect FC/APC? (I mean, does this product accept FC/APC-fiber-code as well as FC/SPC?) Thanks.
cdolbashian  (posted 2023-12-11 09:37:46.0)
Thank you for reaching out to us with this inquiry. You can certainly connect an APC-terminated fiber, but due to the difference in the geometry of the terminated fiber, you will likely have some misalignment of the fiber core with respect to the active area of the sensor. In this with this in mind, I can say that it is indeed compatible, but you will likely see attenuated signal when compared to a -PC style connectorized fiber.
Patryk Troc  (posted 2023-10-25 08:23:47.523)
Dear Sir/Madam, I would like to ask one question about dimensions, which diameter pins of this component have? There isn't any information about it in datasheet, In DXF file there are holes with 0.45mm diameter, this this correct dimension? Yours faithfully, Patryk Troc
ksosnowski  (posted 2023-10-25 11:44:48.0)
Hello Patryk, thanks for reaching out to Thorlabs. The pin diameter for FDS02 is 0.5mm. This model uses the same photodiode from FDS025 and it is additionally factory aligned and focused in a fiber bulkhead. However you can use the pin dimensions from this photodiode as well for reference.
Ray Lambert  (posted 2023-10-04 17:53:32.297)
what is the subsitute for this detector
jdelia  (posted 2023-10-05 01:20:59.0)
Thank you for contacting Thorlabs. While we unfortunately do not offer a direct replacement for the obsolete FGAP71, I have reached out to you directly to discuss your application and which alternative solutions may be suitable for you.
Romain Fourcade  (posted 2023-09-25 15:22:35.187)
Dear, Do you think it is possible to have the FDG1010 in the same case than FDS10x10 ? It would simplify greatly the integration into our systems with 2 pins rather than 2 cables. If no, do you have a suggestion for us. Thank you in advance, best regards
ksosnowski  (posted 2023-09-27 05:06:35.0)
Thanks for reaching out to Thorlabs. As these photodiodes are from different OEMs, we unfortunately are unable to offer this combination of package type of the FDG10X10 photodiode. We apologize for the inconvenience and I have reached out directly to discuss your application further detail.
Alastair Curnock  (posted 2023-09-18 15:43:59.613)
Do you have any Tolerance/uncertainty data on the responsivity of the FD10D Photodiode. ie from the typical curve, ±X% for any given Photodiode. I notice you provide some response variation data for the FDS1010 photodiode. Do you have anything similar for an InGaAs photodiode (preferably the FD10D) Many Thanks
ksosnowski  (posted 2023-09-27 05:59:29.0)
Thanks for reaching out to Thorlabs. While we do not have an exact tolerance for the responsivity, typical variations between lots can be up to +/-10%. Devices from a single batch may have less variance though we do not typically track these photodiodes in such a serial manner. We do offer a few of our photodiodes with serial calibrations like FDS1010-CAL however the only calibrated InGaAs diode we offer is the FGA21-CAL. The calibrated photodiodes ship with an individual spectral calibration report. I have reached out directly to discuss your application in further detail.
Georgi Ynkov  (posted 2022-09-15 11:32:35.93)
Hello, Can you give me the spectral responsivity of the (DSD2 - Dual Band Si/InGaAs Detector). Best Regards George
isaac lawrence  (posted 2022-08-23 05:45:17.503)
I found that the FDS010 is ESD Sensitive Device. I want to know the amount of its sensitivity to ESD. is there any way to measure its sensitivity to ESD?
ksosnowski  (posted 2022-08-26 03:09:16.0)
Hello Isaac, thanks for reaching out to Thorlabs. The FDS010 has a max reverse bias voltage limit of 25V, and we do not have an exact forward voltage limit but would expect in to be in the neighborhood of 1V or possibly less. These photodiodes damage easily when forward biased, and typically ESD events are on the ns timescale and kV range of electric potential so will easily damage in either polarity. We recommend wearing ESD protection whenever handling these units due to this.
Tony Mu  (posted 2022-08-11 23:34:00.08)
hi, Can you suggest what is the rated maximum peak power of this detector (FDS-100)?
ksosnowski  (posted 2022-08-17 10:22:36.0)
Thanks for reaching out to Thorlabs. For the FDS100, we expect optical saturation to occur before surface damage. The leads on the detector tend to be a limiting factor in the amount of generated photocurrent the device can handle. We recommend to keep below 5mA photocurrent to avoid thermal effects leading to wire bond failure. The input light level at which this occurs will depend on the diode's responsivity at your wavelength. I have contacted you directly to discuss your application further.
Pierantonio Brea  (posted 2022-02-25 06:29:32.96)
is it possible to obtain info about Cj capacitance vs Bias voltage of this Photodiode Thnaks in advance Pierantonio
ksosnowski  (posted 2022-02-25 06:57:13.0)
Thanks for reaching out to us, you can view the FSD100 Capacitance vs Bias Voltage by clicking on the blue "i" icons below each diode's picture. We have the Capacitance, Dark current, and Responsivity plots, as well as download links to the excel table for each plot.
Aditya Choudhary  (posted 2021-12-27 01:43:42.65)
Hii can you please tell me the max incident power for FDS100?
cdolbashian  (posted 2021-12-29 01:28:06.0)
Thank you for reaching out to us regarding this inquiry. The max current output, to avoid damaging the diode, would be ~5mA. By using this as a max current, we can use the relationship of Responsivity = Amps/Watt to identify the max power which would be associated with the max current of 5mA. The responsivity can be found on the specsheet of the diode itself.
Imke Timmermans  (posted 2021-07-13 02:10:06.797)
In your information I miss the field of view. It would be nice to know this for the photodiodes.
cdolbashian  (posted 2021-07-20 01:26:46.0)
Thank you for reaching out to us at Thorlabs! These diodes have different packages, different transparent windows, diode-package spacings, and geometries, so the FoV will vary from part to part. I have reached out to you directly to discuss the specific diode in which you were inquiring.
Denis Tihon  (posted 2021-05-21 11:04:47.487)
Is the FGA01FC photodetector working when connected to an FC/APC connector? I would like to connect it directly to a TW1064R5A1A coupler.
cdolbashian  (posted 2021-06-04 11:45:59.0)
Thank you for reaching out to us with your inquiry! The FGA01FC has been confirmed to have similar performance with an FC/APC patch cable. The observed difference, when compared to an FC/PC connector, was less than 1 dB.
Michael Linde Jakobsen  (posted 2021-05-20 03:59:42.613)
Very sorry to hear that you are terminating this product.
YLohia  (posted 2021-05-20 10:22:43.0)
Hello, thank you for your feedback. We will consider offering an alternative to this photodiode in the future.
Bo Tian  (posted 2021-04-23 11:41:33.917)
What is the substitute of FGAP71? Please quote me 50 pcs.
YLohia  (posted 2021-04-23 02:05:00.0)
Thank you for contacting Thorlabs. There are 3 alternatives-- SM05PD7A, PDA25K2, and DET25K2. These all contain the same FGAP71 photodiode.
Malcolm Higman  (posted 2021-01-18 10:11:54.67)
Your data-sheet has no dimensions on the pin positions which appear to be non-standard. Do you have a drawing with the pin positions with dimensions? Thanks. Malcolm
asundararaj  (posted 2021-01-26 03:28:06.0)
Thank you for contacting Thorlabs. While the FDGA05 does not have a standard pin configuration, the Solidworks file can be used to find the pin spacing. I have contacted you directly about this.
Ben Garber  (posted 2020-05-27 17:20:24.69)
I was wondering what the window thickness is on the FDS015 (for lens matching--I'm considering the N414TM-B or C392TME-B).
YLohia  (posted 2020-05-28 04:29:17.0)
Thank you for contacting Thorlabs. The window thickness for this photodiode is ~0.21 mm.
user  (posted 2020-04-23 11:46:32.8)
You should offer the extended range InGaAs detectors in a premounted configuration.
asundararaj  (posted 2020-04-23 02:06:42.0)
Thank you for your valuable feedback. I have posted in our internal engineering forum about extending the line of photodiodes we offer as mounted photodiodes for future consideration.
Haixuan Lin  (posted 2020-02-14 10:35:12.473)
Please help to check the angle dependence of FDS1010. If the diode emitting a cone up to 20deg in the fast axis, will it affect the responsivity of FDS1010?
asundararaj  (posted 2020-02-17 10:01:36.0)
Than you for contacting Thorlabs. When using a photodiode to detect a diverging beam, the detection would depend on the amount of light hitting the photodiode as well as the spatial uniformity of the diode. You can find the Spatial Uniformity of this and other diodes in the Lab Fact linked below. In addition, the FDS1010 has a broadband AR Coating on the active area. From this coating, there are some losses at higher angles of incidence due to Fresnel reflections. I will contact you via email about the angular dependence of the measured signal. Lab Fact - https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10741&tabname=Spatial%20Uniformity
Ben Garber  (posted 2019-11-19 15:06:07.05)
Dear Thorlabs, Looking at the specs for the FDS02, it's unclear whether the responsivity is with respect to the power in the fiber or incident power. Is the responsivity defined with respect to the power in the fiber? If not, what is the coupling efficiency?
asundararaj  (posted 2019-11-21 08:58:37.0)
Thank you for contacting Thorlabs. The responsivity is given in terms of the power incident on the photodetector. We typically expect a coupling loss of 10% and can vary marginally based on alignment.
anais leproux  (posted 2019-11-14 11:17:19.773)
Hello, I could not find the value of the shunt resistance of the photodiodes FDS100 and FD11A. Would it be possible to have them please? Thank you, Anais Leproux
YLohia  (posted 2019-11-20 04:26:06.0)
Hello Anais, thank you for contacting Thorlabs. The shunt resistances are 1 G Ohm (FDS100) and 5-100 G Ohm (FD11A) at room temperature. Please note that this parameter is not screened for individual units and can vary significantly.
Scott Hunter  (posted 2019-11-12 13:07:10.057)
Hello, I am considering this product in my design. Can you please let me know where I can get more detailed information on this product such as performance specifications with 0V bias? Thank you!
YLohia  (posted 2019-11-12 02:34:33.0)
Hello, thank you for contacting Thorlabs. The Dark Current and Capacitance values are given at various bias levels, and can be accessed by clicking on the blue "info" icon in the specs table.
dayana A  (posted 2019-10-24 19:25:00.727)
Please share the Maximum Forward Current of FGA01FC
YLohia  (posted 2019-10-24 10:44:04.0)
The maximum forward current of the FGA01FC is 5 mA.
Tariq Shamim Khwaja  (posted 2019-10-08 13:55:26.557)
What is the maximum input power density (damage threshold) for Ge-photodiodes? FDG10X10
asundararaj  (posted 2019-10-09 10:43:06.0)
Thank you for contacting Thorlabs. We do not have estimate on the damage threshold for the photodiodes. We typically recommend keeping the output current to be <10mA to avoid the internal wire in the FDG10x10 from failing. You can estimate the output current for your input power and wavelength from the responsivity graph on the 2nd page of the spec sheet at https://www.thorlabs.com/_sd.cfm?fileName=TTN126580-S01.pdf&partNumber=FDG10X10
user  (posted 2019-08-02 09:08:10.89)
What is the series resistance of the photodidoe FDS015 and FDS025? The reason behind this is the impedance matching between the output impedance of the photodiode and the input impedance of a transimpedance amplifier.
YLohia  (posted 2019-08-16 02:34:12.0)
Hello, thank you for contacting Thorlabs. The series resistance for both of these is on the order of 50 - 100 Ohm typically.
Andrey Kuznetsov  (posted 2019-07-13 17:22:48.15)
Some of these photodiodes look like a Hamamatsu product, Hamamatsu distinguishes some products as Si Photodiode and others as Si PIN Photodiode. Hamamatsu's offerings for InGaAs is exclusively for InGaAs PIN Photodiodes. Thorlabs does not distinguish photodiodes as whether they are PN or PIN. Can you explain what the effect on the specifications will be if a PIN photodiode is used in a zero bias photovoltaic mode? None of Thorlab's InGaAs are listed as PIN, and I was unable to find any vendor that sells a non-PINed InGaAs photodiode, so Thorlabs must be selling PINed photodiodes. Shouldn't PINed photodiodes be biased for they to work as specified, or will they still work fine like a regular photodiode, just slower rise/fall time and lower dark current than listed? What about saturation limit?
asundararaj  (posted 2019-07-19 04:57:52.0)
Without a bias voltage, the photodiode will have a much larger capacitance which leads to slower rise/fall time. Dark current spec however will not be listed under a Photovoltaic mode, because by definition of dark current, it requires a bias voltage (hence, this is sometimes specified under a very small voltage, e.g.10mV). The NEP in the photovoltaic mode would normally only accounts the noise from the shunt resistance. So it will be different as well. Our NEP spec accounts both of the Johnson noise from the shunt resistance and the shot noise from the dark current. As for the saturation power, it would decrease at 0 V Bias. (https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10741) Other parameters that we do not specify can also change with and without a Bias Voltage. For instance, adding a Bias Voltage would theoritically improve linearity. Another parameter that would change is the responsivity at various wavelengths. The amount of variance would vary from diode to diode. The InGaAs detectors that we carry are all PIN diodes. Some of our Si diodes are also PIN diodes. At higher wavelengths, the penetration depth is much larger so adding the intrinsic layer to the diode improves the diodes performance. However, in that case these photocurrents would be from diffusion and hence, its speed is much slower.
user  (posted 2019-05-21 09:07:54.173)
Hi, I would like to use FDS100 Photo diode for Data communication application. I would like to know the Pixel Size and format of FDS 100. Please share the same at the earliest possible. Regards
YLohia  (posted 2019-05-21 08:44:32.0)
Hello, the FDS100 is a silicon photodiode (not a CCD/CMOS camera), and thus, does not have a pixel size or format. That being said, it has an active area of 3.6 mm x 3.6 mm. If you are interested in cameras, please see our selection here : https://www.thorlabs.com/navigation.cfm?guide_id=2025.
user  (posted 2018-10-28 13:49:13.483)
Sorry,the last question I asked was sensitivity map, not responsivity plots, I still cannot find out what is the sensitivity range(in dBm).
YLohia  (posted 2018-12-27 03:59:01.0)
Hello, thank you for the clarification. This information can be found in our "Lab Facts" tab above, under "Photodiode Spatial Uniformity".
user  (posted 2018-10-25 22:01:07.26)
Hello! I want to know what is the sensitivity map of this photodiode?or what factor can take place of sensitivity?
YLohia  (posted 2018-10-26 08:57:44.0)
The responsivity plots can be found on the spec sheet or by clicking the blue "info" icon on the table.
dylan  (posted 2018-09-05 14:10:05.543)
Hi, is the pinout diagram for FGA01 viewed from the bottom? The pinout for FGA01FC explicitly states the view is from the bottom, and I believe the photodiodes are identical, but I need confirmation that this is the case. Kindest regards,
nbayconich  (posted 2018-09-06 03:12:42.0)
Thank you for contacting Thorlabs. Yes that is correct, both of these photodiodes have identical pin configurations. Our pin configurations will typically show a bottom view of the photodiode housing.
donyakhaledyan  (posted 2018-07-16 03:49:37.237)
hello I have a question and the answer of my question is so necessary so thank you so much if you help me. for these detectorsfds10x10&fds1010)What is the proper interface?
YLohia  (posted 2018-07-23 04:44:41.0)
Hello, thank you for contacting Thorlabs. I'm not sure I understand what you mean by "what is the proper interface?". Are you asking if these detectors are fiber coupled? If you're asking about the packaging type (e.g., TO-5, etc.), unfortunately, the FDS10X10 and FDS1010 don't have a standard. I have reached out to you directly to discuss this further.
lebouquj  (posted 2018-04-19 16:33:12.957)
Hi, Do you sell the fiber bulkhead of FGA01FC alone (without the diode). I cannot find it in your website. Thanks, Jean-Baptiste
YLohia  (posted 2018-04-20 10:56:39.0)
Hello Jean-Baptiste, thank you for contacting Thorlabs. I will reach out to you directly to discuss the possibility of offering this.
user  (posted 2017-07-17 15:09:46.207)
I am seeing ~10x increase in responsivity for FDS010 with a reverse biased circuit like you have in your tutorial in Fig. 2. I am using 12VDC, with 1k resistor in filter, and 10k load resistor. Is this expected, or am I doing something wrong.
tfrisch  (posted 2017-08-09 05:35:48.0)
Hello, thank you for contacting Thorlabs. While I would not expect the responsivity to change with bias voltage, increasing the bias will increase the range over which the diode will have linear response between input power and output current before saturating. If you would like to discuss this application further, please reach out to us at TechSupport@Thorlabs.com.
marty.lawson  (posted 2017-02-01 12:49:31.84)
How large of a fiber optic core can the the FDS02 photo-diode be used with before coupling efficiency drops?
tfrisch  (posted 2017-02-16 02:14:08.0)
Hello, thank you for contacting Thorlabs. While the active area is 250um in diameter, the largest fiber we have that is smaller than that would be a 200um core. The FDS02 does not include a ball lens between the fiber and the detector. I will reach out to you with more details.
faryads  (posted 2016-03-22 21:36:37.053)
Hi, is the FGA01FC a multi-quantum-well structure photodiode?
besembeson  (posted 2016-03-25 12:26:10.0)
Response from Bweh at Thorlabs USA: The FGA01FC is not a multi-quantum-well structure. This is simply a doped InGaAs material to create a P-N junction for charge transfer when illuminated by light of suitable wavelength. Quantum wells on the other hand are heterostructure made by joining materials, in layers at the atomic level, which typically leads to an emission.
akpabioubongabasi  (posted 2016-02-29 14:16:38.723)
Please I need a Photodector with wide sensing area, a wavelength of 650nm and which comes with an SMA Connector
besembeson  (posted 2016-03-09 12:16:53.0)
Response from Bweh at Thorlabs USA: The SM05PD1A (Large Area Mounted Silicon Photodiode, 350-1100 nm, Cathode Grounded) could be a suitable recommendation. Others can be found at the following link on our website: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1285
user  (posted 2015-10-16 14:16:32.147)
What is the series and shunt resistance of FDS100?
besembeson  (posted 2015-10-27 04:54:33.0)
Response from Bweh at Thorlabs USA: We don't have the exact values from the manufacturer of the photodiode but the shunt resistance should be in the Giga Ohm range while the series resistance should be extremely low that it can be negligible.
ehrler  (posted 2015-09-24 03:41:03.583)
Do you offer calibration for the DSD2 photodiode? Thanks!
besembeson  (posted 2015-10-08 12:06:35.0)
Response from Bweh at Thorlabs USA: This is not possible for the DSD2. There is a limitation to the minimum detector size for us to do such calibration, which is 2mm minimum. The InGaAs sensor is only about 1.5mm.
jarkko.piirto  (posted 2015-03-24 10:27:03.187)
I would need a photodiode set up with specific mount (3pcs) for picosecond laser alignment. Focused spot size (1/e2) is <100µm. Succesfull guidance will mean purchase..
jlow  (posted 2015-03-24 04:42:43.0)
Response from Jeremy at Thorlabs: We will need more information on your application first. We will contact you directly about this.
aklossek  (posted 2014-05-09 07:48:19.477)
Dear ladies and gentlemen, I am looking for a Si photodiode for a stimulated raman microscope, where the modulation of a ps-laser beam must be detected. The diode has to work in MHz range, quite large active area and must be sensitive between 800 and 1000nm. Up to now I thought about the DET100A. But now I have doubts that it will saturate to fast. Can you suggest another diode, which saturates at high powers to detect the laser beam. Best regards André Klossek
jlow  (posted 2014-05-13 08:43:47.0)
Response from Jeremy at Thorlabs: I will contact you directly to get more information on your application and make a recommendation.
tanzwei  (posted 2013-05-05 06:39:49.27)
Could you like to tell me the damage threshold of FGA10 ?
jlow  (posted 2013-05-09 11:19:00.0)
Response from Jeremy at Thorlabs: I would recommend keeping the output current to be <10mA to avoid the internal wire in the FGA10 from failing. You can estimate the output current for your input power and wavelength from the responsivity graph on the 2nd page of the spec sheet at http://www.thorlabs.com/Thorcat/2200/FGA10-SpecSheet.pdf.
jlow  (posted 2012-10-24 16:14:00.0)
Response from Jeremy at Thorlabs: There's a ball lens covering the chip and it is not AR coated.
t.schmoll  (posted 2012-10-18 13:30:14.92)
Is there a window or a ball lens covering the chip? Is the window or ball lens AR coated? If so, for which wavelength is it optimized? Thank you! Tilman
jlow  (posted 2012-09-05 09:15:00.0)
Response from Jeremy at Thorlabs: I will get in contact with you directly to discuss about your application.
kkkdane  (posted 2012-09-03 10:17:41.0)
Hi, I’m a researcher in South of Korea Recently, I am developed infrared moisture detector. And I used LED and PD that is your product. I have a question. What is the question PD, LD(laser diode) and LED that use infrared moisture detector or infrared moisture analyzer? Recently, What other companies use the LED, PD that used the water detector of Commercial products? And what is commercial product? And, If you will give a detailed information about the LED, PD. I appreciate your help.
jlow  (posted 2012-08-23 16:31:00.0)
Response from Jeremy at Thorlabs: The junction capacitance between 4V and 5V is pretty much flat. Unfortunately we do not have any data on the capacitance and fall time specs beyond 5V.
Mathias.Helsen  (posted 2012-08-22 06:14:07.0)
I would like to use this diode as a detector for microwave modulated light, but the fall time at 5V is too high. How much doe the capacitance and fall time change when the bias voltage is increased?
jlow  (posted 2012-08-17 11:16:00.0)
Response from Jeremy at Thorlabs: We are not able to disclose the thicknesses for the PIN layers.
cardoza.david  (posted 2012-08-17 09:50:00.0)
Is there a way to get find out the thickness of the p, i and n regions of the FDS010 diodes? Thank you.
jlow  (posted 2012-08-16 13:42:00.0)
Response from Jeremy at Thorlabs: I will get in contact with you directly for the Excel spreadsheet. Please note that the spectral responsivity of your photodiode can be quite different than what is shown online. One alternative to using the FDS100 is the FDS100-CAL (http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=2822&pn=FDS100-CAL) which is the NIST calibrated version of the FDS100.
brian.cox  (posted 2012-08-16 12:13:51.0)
Is the raw spectral responsivity data for the FDS100 available in an Excel spreadsheet? I'd like to get a more exact A/W value for my specific wavelengths of interest. Thanks!
tcohen  (posted 2012-03-22 14:27:00.0)
Response from Tim at Thorlabs: Thank you for your feedback. If the window is removed the diode can be easily damaged and absorb water from the atmosphere. This will be detrimental to the performance of the FGA10. If the window is removed we recommend storing it in an N2 dry box.
frank  (posted 2012-03-22 13:31:41.0)
Can you tell me if the performance of the FGA10 will degrade if its window is removed?
bdada  (posted 2012-03-16 12:33:00.0)
Response from Buki at Thorlabs: Thank you for your suggestion. We will work on adding dark current vs bias voltage charts to our website.
user  (posted 2012-03-15 19:02:40.0)
Please consider adding a plot that shows the dark current as a function of bias voltage.
bdada  (posted 2012-01-31 23:43:00.0)
Response from Buki at Thorlabs: The temperature does have a slight effect on the responsivity, but mostly in near the bandgap region. We have sent you some typical curves to review.
ale.cere  (posted 2012-01-30 12:27:49.0)
I am currently working with a FDG05 and I notice that the efficiency changes with temperature, as indicated also in the datasheet. Is it available any data regarding the expected change in responsivity as funcion of temperature?
jjurado  (posted 2011-07-07 09:57:00.0)
Response from Javier at Thorlabs to jasiel.mora: Thank you very much for contacting us! We actually show a recommended circuit diagram for our photodiodes on their spec sheets. Take a look at the spec sheet for the FDG03 here: http://www.thorlabs.com/Thorcat/13800/13846-S01.pdf I will contact you directly in case you have any further questions.
jasiel.mora  (posted 2011-07-06 16:42:48.0)
Could you please sugest any connection diagram for the sensor FDG03? Thanks.
jjurado  (posted 2011-04-20 12:09:00.0)
Response from Javier at Thorlabs to last poster: Thank you very much for contacting us. The shunt resistance of the FDS1010 photodiode is in the range of 50-200 MOhm (@ 10 mV reverse bias). Also, we have added a graph of the maximum, average, and minimum responsivity values for the FDS1010 (See Responsivity Graphs tab). Please contact us at techsupport@thorlabs.com if you have any further questions or comments.
user  (posted 2011-04-20 13:08:43.0)
What is the shunt resistance of FDS1010? Its not in the specs. A typ. and min. responsivity value would be useful as well.
julien  (posted 2011-01-18 16:08:51.0)
A response from Julien at Thorlabs: The FGA04 can only be calibrated at a predefined fixed wavelength by using a fiber coupled laser source. A calibration over the whole wavelength range of this photodiode is unfortunately not possible due to its small active area. Such a calibration would be made in free space using a monochromator, whose output beam diameter is about 1.5mm. Such a beam would largely overfill the active sensor area, and thus make the calibration highly inaccurate. You can contact our tech support (techsupport@thorlabs.com) to further discuss which solutions could be adapted to your need
user  (posted 2011-01-18 17:46:35.0)
why a NIST-traceable calibration is not possible for FGA04? Im looking for a fiber-coupled detector that is provided with calibration.
kleap  (posted 2010-10-28 13:45:47.0)
Our FDG05 are failing roughly 3 months of use. What is the expected life of these detectors? We are exposing indirect UV light around 5W/cm2 of intensity to the LADs. Could this be of a concern?
Thorlabs  (posted 2010-10-28 15:01:31.0)
Response from Javier at Thorlabs to kleap: at 5 W/cm^2, the detector will most likely be saturated; however, we specify a damage threshold of 10 W/cm^2 for the FDG05, so I do not expect excessive power to be the reason for failure. Also, we do not have a lifetime spec, since there are too many factors involved. I will contact you directly to troubleshoot your application.
Thorlabs  (posted 2010-07-23 14:06:31.0)
Response from Javier at Thorlabs to ranutyagi: Thank you for your feedback. With an input of 10 mW, you will most likely end up damaging your photodiodes. As a guideline, we specify a maximum input power density of 100 mW/cm^2. So, for example, if we assume that you have a 10 mW, 2 mm diameter beam at the input, the resulting power density is ~333mW/cm^2, which clearly exceeds the damage threshold. For linear operation of the photodiode, we recommend limiting the input to ~ 1 mW. Above this value, the diode undergoes saturation and, eventually, damage.
ranutyagi  (posted 2010-07-23 07:03:58.0)
I am using FDS100 and FDS010 with CW 10mW peak power laser diode. will it be damaging my photodiode? How much is the maximum input power these diodes can sustain.
Adam  (posted 2010-04-29 16:58:35.0)
A response from Adam at Thorlabs to marcoc: Saturation occurs for these diodes at approximately 10mW. We would suggest using these diodes with peak and average powers that are less than 10mW if you want to avoid saturation.
marcoc  (posted 2010-04-29 16:51:34.0)
Any idea about the saturation for pulsed (50fs) laser beam at 800 nm ? thanks marco
apalmentieri  (posted 2010-01-14 15:34:33.0)
A response from Adam at Thorlabs to Curtis: The operating and storage temperature ranges for the FDS100 are the following: -25 to +85 deg C operating, -40 to +100 deg C storage.
curtis.m.ihlefeld  (posted 2010-01-14 15:12:09.0)
Dear Sirs, I have several FDS100 photodiodes and would like to know the allowable temperature ranges for operation and storage. Regards, Curtis Ihlefeld
danhickstein  (posted 2009-08-07 14:16:56.0)
Dear Thorlabs, It would be nice to have the wavelength response for the FDS02 plotted on the Graphs page. I found the graph on the spec sheet, but it would be nice to see it plotted on the same graph as the rest of the FDS series. Regards, Dan
Tyler  (posted 2009-02-02 09:25:34.0)
A response from Tyler at Thorlabs to ocarlsson: The FGA04 spec sheet available under the Drawings and Documents tab lists the max forward current as 10 mA and the damage threshold at 70 mW. The damage threshold is the point at which the photodiode sensor will fail, however, internal wires in the FGA04 package will fail when the forward current exceeds 10 mA. Use the responsivity curve in the spec sheet to approximate the forward current for a given wavelength or contact our technical support department for assistance. An optical fiber attenuator like the FA05T, FA10T, FA15T, or FA25T can be used in to reduce the power in the optical fiber to a level that is safe to use with the FGA04. Thank you for your question, I will be adding a note to the bottom of the table on the Specs tab to help future customers with this issue.
ocarlsson  (posted 2009-01-16 02:31:20.0)
The FGA04 max current is 10mA and damage threshold is 100mW. Responsivity 0.8. How is the damage threshold calculated? Best regards Olle

下表は、当社のフォトダイオードタイプのディテクタ、フォトコンダクティブ型ディテクタ、焦電ディテクタの一覧です。同一の列に記載されている型番の検出素子は同じです。

Photodetector Cross Reference
WavelengthMaterialUnmounted
Photodiode
Mounted
Photodiode
Biased
Detector
Amplified
Detector
Amplified Detector,
OEM Package
200 - 1100 nmSiFDS010SM05PD2A
SM05PD2B
DET10A2PDA10A2PDAPC5
Si-SM1PD2A---
240 - 1170 nmBlack SiFDBS22SM05PD8ADET20X2--
320 - 1000 nmSi---PDA8A2-
320 - 1100 nmSiFD11ASM05PD3A-PDF10A2-
Si- a-DET100A2aPDA100A2aPDAPC2a
340 - 1100 nmSiFDS10X10----
350 - 1100 nmSiFDS100
FDS100-CALb
SM05PD1A
SM05PD1B
DET36A2PDA36A2PDAPC1
SiFDS1010
FDS1010-CALb
SM1PD1A
SM1PD1B
---
400 - 1000 nmSi---PDA015A2
FPD310-FS-VIS
FPD310-FC-VIS
FPD510-FC-VIS
FPD510-FS-VIS
FPD610-FC-VIS
FPD610-FS-VIS
-
400 - 1100 nmSiFDS015c----
SiFDS025c
FDS02d
-DET02AFC(/M)
DET025AFC(/M)
DET025A(/M)
DET025AL(/M)
--
400 - 1700 nmSi & InGaAsDSD2----
500 - 1700 nmInGaAs--DET10N2--
0.6 - 16 µmLiTaO3---PDA13L2e-
750 - 1650 nmInGaAs---PDA8GS-
800 - 1700 nmInGaAsFGA015--PDA015C2-
InGaAsFGA21
FGA21-CALb
SM05PD5ADET20C2PDA20C2
PDA20CS2
-
InGaAsFGA01c
FGA01FCd
-DET01CFC(/M)--
InGaAsFDGA05c--PDA05CF2PDAPC6
InGaAs--DET08CFC(/M)
DET08C(/M)
DET08CL(/M)
--
InGaAs---PDF10C2-
800 - 1800 nmGeFDG03
FDG03-CALb
SM05PD6ADET30B2PDA30B2-
GeFDG50-DET50B2PDA50B2PDAPC8
GeFDG05----
900 - 1700 nmInGaAsFGA10SM05PD4ADET10C2PDA10CS2-
900 - 2600 nmInGaAsFD05D-DET05D2--
FD10D-DET10D2PDA10D2PDAPC7
950 - 1650 nmInGaAs---FPD310-FC-NIR
FPD310-FS-NIR
FPD510-FC-NIR
FPD510-FS-NIR
FPD610-FC-NIR
FPD610-FS-NIR
-
1.0 - 5.8 µmInAsSb---PDA10PT(-EC)-
2.0 - 8.0 µmHgCdTe (MCT)VML8T0
VML8T4f
--PDAVJ8-
2.0 - 10.6 µmHgCdTe (MCT)VML10T0
VML10T4f
--PDAVJ10-
2.7 - 5.0 µmHgCdTe (MCT)VL5T0--PDAVJ5-
2.7 - 5.3 µmInAsSb---PDA07P2PDAPC9
  • こちらのディテクタに内蔵されているフォトダイオード(PD)のみを電子回路基板なしでの購入をご検討の場合は、当社までお問い合わせください。
  • 校正済みマウント無しフォトダイオード 
  • マウント無しTO-46 Can型フォトダイオード
  • マウント無しTO-46 Can型フォトダイオード、 FC/PCバルクヘッド付き
  • 焦電ディテクタ
  • TEC付き光起電力型ディテクタ
Back to Top

Siフォトダイオード、200 nm~1100 nm

Click Image
for Details
FDS010FDS010FDS10X10FDS100FDS1010FDS1010FDS02FDS025
Item #FDS010FD11AFDS10X10FDS100FDS1010FDS015FDS02FDS025
Key FeatureHigh Speed, UV Grade Fused Silica Window to Provide Sensitivity Down to 200 nmLowest Dark Current in TO-18 Can with a WindowLow Dark Current in 10 mm x 10 mm Ceramic PackageHigh Speed, Largest Sensor in a TO-5 CanHigh Speed, Large Active Area and Mounted on an Insulating Ceramic SubstrateHighest Speed and Lowest Capacitance in a TO-46 Can with an AR-Coated WindowHigh Speed and Low Capacitance in a Direct Fiber-Coupled FC/PC PackageHigh Speed and Low Capacitance in a TO-46 Can with a Ball Lens
Infoinfoinfoinfoinfoinfoinfoinfoinfo
Wavelength Range200 - 1100 nma320 - 1100 nm340 - 1100 nm350 - 1100 nm350 - 1100 nm400 - 1100 nm400 - 1100 nm400 - 1100 nm
Active Area0.8 mm2
(Ø1.0 mm)
1.21 mm2
(1.1 mm x 1.1 mm)
100 mm2
(10 mm x 10 mm)
13 mm2
(3.6 mm x 3.6 mm)
100 mm2
(10 mm x 10 mm)
0.018 mm2
(Ø150 µm)
0.049 mm2
(Ø0.25 mm)
0.049 mm2
(Ø0.25 mm)
Rise/Fall Timeb1 ns / 1 ns
@ 830 nm, 10 V
400 nsc,d
@ 650 nm, 0 V
150 ns / 150 nsd
@ 5 V
10 ns / 10 nsd
@ 632 nm, 20 V
65 ns / 65 nsd
@ 632 nm, 5 V
35 ps / 200 ps
@ 850 nm, 5 V
47 ps / 246 ps
@ 850 nm, 5 V
47 ps / 246 ps
@ 850 nm, 5 V 
NEP (W/Hz1/2)5.0 x 10-14
@ 830 nm, 10 V
6.8 x 10-16
@ 960 nm, 0 V
1.50 x 10-14
@ 960 nm
1.2 x 10-14
@ 900 nm, 20 V
2.07 x 10-13
@ 970 nm, 5 V
8.60 x 10-15
@ 850 nm, 5 V
9.29 x 10-15
@ 850 nm, 5 V
9.29 x 10-15
@ 850 nm, 5 V
Dark Current0.3 nA (Typ.)
@ 10 V
2.0 pA (Max)
@ 10 mV
200 pA @ 5 V1.0 nA (Typ.)
@ 20 V
600 nA (Max)
@ 5 V
0.03 nA (Typ.)
@ 5 V
35 pA (Typ.)
@ 5 V
35 pA (Typ.)
@ 5 V
Junction
Capacitance
6 pF (Typ.) @ 10 V140 pF (Typ.)
@ 0 V
380 pF @ 5 V24 pF (Typ.)
@ 20 V
375 pF (Typ.)
@ 5 V
0.65 pF (Typ.)
@ 5 V
0.94 pF (Typ.)
@ 5 V
0.94 pF (Typ.)
@ 5 V
PackageTO-5TO-18CeramicTO-5CeramicTO-46TO-46, FC/PC BulkheadTO-46
Compatible
Sockets
STO5S
STO5P
STO46S
STO46P
Not AvailableSTO5S
STO5P
Not AvailableSTO46S
STO46P
STO46S
STO46P
STO46S
STO46P
Multipacks
Available
---5 Pack (-P5)
10 Pack (-P10)
50 Pack (-P50)
----
  • UV光を長時間照射する場合、製品の仕様は低下します。例えば、この製品のUV感度が低下し、暗電流が増加する可能性があります。仕様の低下を引き起こす照射時間の程度については、照射レベル、強度、使用時間などの要因によって異なります。
  • 特に記載がない限り、典型値 RL = 50 Ω
  • 1 kΩの抵抗器で測定
  • このフォトダイオードの場合、近赤外域(NIR)の波長では立ち上がり/立ち下り時間(Rise/Fall Time)は遅くなります。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
FDS010 Support Documentation
FDS010Si Photodiode, 1 ns Rise Time, 200 - 1100 nm, Ø1 mm Active Area
¥7,242
3-5 Weeks
FD11A Support Documentation
FD11ASi Photodiode, 400 ns Rise Time, 320 - 1100 nm, 1.1 mm x 1.1 mm Active Area
¥2,192
Today
FDS10X10 Support Documentation
FDS10X10Si Photodiode, 150 ns Rise Time, 340 - 1100 nm, 10 mm x 10 mm Active Area
¥17,251
3-5 Weeks
FDS100 Support Documentation
FDS100Si Photodiode, 10 ns Rise Time, 350 - 1100 nm, 3.6 mm x 3.6 mm Active Area
¥2,247
3-5 Weeks
FDS100-P5 Support Documentation
FDS100-P5Si Photodiode, 10 ns Rise Time, 350 - 1100 nm, 3.6 mm x 3.6 mm Active Area, 5 Pack
¥10,867
3-5 Weeks
FDS100-P10 Support Documentation
FDS100-P10Si Photodiode, 10 ns Rise Time, 350 - 1100 nm, 3.6 mm x 3.6 mm Active Area, 10 Pack
¥20,965
3-5 Weeks
FDS100-P50 Support Documentation
FDS100-P50Si Photodiode, 10 ns Rise Time, 350 - 1100 nm, 3.6 mm x 3.6 mm Active Area, 50 Pack
¥100,916
3-5 Weeks
FDS1010 Support Documentation
FDS1010Si Photodiode, 65 ns Rise Time, 350 - 1100 nm, 10 mm x 10 mm Active Area
¥8,382
3-5 Weeks
FDS015 Support Documentation
FDS015Si Photodiode, 35 ps Rise Time, 400 - 1100 nm, Ø150 µm Active Area
¥8,071
3-5 Weeks
FDS02 Support Documentation
FDS02Si Photodiode, 47 ps Rise Time, 400 - 1100 nm, Ø0.25 mm Active Area, FC/PC Bulkhead
¥12,571
Today
FDS025 Support Documentation
FDS025Si Photodiode, 47 ps Rise Time, 400 - 1100 nm, Ø0.25 mm Active Area
¥5,168
3-5 Weeks
Back to Top

ブラックシリコン(Si)フォトダイオード、240~1170 nm

  • 標準的なSiフォトダイオードと比較して、仕様波長範囲にわたり高い応答性
  • Schott UVガラスウィンドウを取り付けたハーメチックシールパッケージにマウント済み
Item #InfoWavelength
Range
Active
Area
PackageRise/Fall
Timea
NEP
(W/Hz1/2)
Dark
Current
Junction
Capacitance
Compatible
Sockets
FDBS22info240 - 1170 nm4.0 mm2
(2.0 mm x 2.0 mm)
TO-4615 ns / 29 ns
@ 650 nm, 10 V
7.1 x 10-15 (Typ.)
@ 1010 nm, 10 mV
1 nA (Max)
@ 10 V
13 pF (Typ.)
@ 10 V
STO46S
STO46P
  • 典型値、RL = 50 Ω
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
FDBS22 Support Documentation
FDBS22NEW!Black Si Photodiode, 15 ns Rise Time, 240 - 1170 nm, 2.0 mm x 2.0 mm Active Area
¥40,415
3-5 Weeks
Back to Top

デュアルバンドSi/InGaAsフォトダイオード、 400~1800 nm

  • SiとInGaAsの2つのディテクターチップ設計による広い検出範囲
  • 4ピン TO-5パッケージ
  • 大きな受光部
Item #InfoWavelength
Range
Active
Area
PackageRise/Fall
Timea
NEP
(W/Hz1/2)
Dark
Current
Junction
Capacitance
Compatible
Sockets
DSD2info400 - 1100 nm
(Si)
1000 - 1800 nm
(InGaAs)
5.07 mm2
(Ø2.54 mm, Si)
1.77 mm2
(Ø1.50 mm, InGaAs)
TO-54.0 µs
(Both Layers)
@ 0 V
1.9 x 10-14
(Si)
2.1 x 10-13
(InGaAs)
1 nA @ 1 V
(Si)
0.5 nA @ 1 V
(InGaAs)
450 pF @ 0 V
(Si)
300 pF @ 0 V
(InGaAs)
Not Available
  • 特に記載がない限り、典型値 RL = 50 Ω。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
DSD2 Support Documentation
DSD2Dual Band Si/InGaAs Detector, 4 µs Rise Time, 400 - 1800 nm, Ø2.54/Ø1.5 mm
¥90,975
3-5 Weeks
Back to Top

Geフォトダイオード、800~1800 nm

Click Image
for Details
FDG03FDG50FDG05FDG05
Item #FDG03FDG05aFDG50FDG10X10
Key FeatureLarge Active Area in a TO-5 CanHigh Speed on a Ceramic SubstrateLarge Active Area in a TO-8 CanLargest Active Area
Infoinfoinfoinfoinfo
Wavelength Range800 - 1800 nm800 - 1800 nm800 - 1800 nm800 - 1800 nm
Active Area7.1 mm2 (Ø3 mm)19.6 mm2 (Ø5 mm)19.6 mm2 (Ø5 mm)100 mm2
(10 mm x 10 mm)
Rise/Fall Timeb600 ns / 600 ns @ 3 V220 ns / 220 ns @ 3 V220 ns / 220 ns (Typ.) @ 10 V10 μs (Typ.) @ 1 V
NEP2.6 x 10-12 W/Hz1/2 @ 1550 nm4.0 x 10-12 W/Hz1/2 @ 1550 nm4.0 x 10-12 W/Hz1/2 @ 1550 nm4.0 x 10-12 W/Hz1/2 @ 1550 nmc
Dark Current4.0 µA (Max) @ 1 V40 µA (Max) @ 3 V60 µA (Max) @ 5 V50 µA (Max) @ 0.3 V
Junction Capacitance 6 nF (Typ.) @ 1 V
4.5 nF (Typ.) @ 3 V
3000 pF (Typ.) @ 3 V1800 pF (Max) @ 5 V
16000 pF (Max) @ 0 V
80 nF (Typ.) @ 1 V
135 nF (Typ.) @ 0 V
Shunt Resistance25 kΩ (Min)-4 kΩ (Typ.)2 kΩ (Min)
PackageTO-5CeramicTO-8Ceramic
Compatible
Sockets
STO5S
STO5P
Not AvailableSTO8S
STO8P
Not Available
  • FDG05およびFDG10X10のリード線は、はんだ付けによってセンサが損傷する恐れがあるため、伝導製のエポキシ接着剤を使ってセンサに装着されています。但し、この接着はもろいため、リード線が外れないよう、取扱いには十分ご注意ください。
  • 特に記載がない限り、典型値 RL = 50 Ω。
  • ノイズ等価電力(NEP)は光起電力モードの場合。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
FDG03 Support Documentation
FDG03Ge Photodiode, 600 ns Rise Time, 800 - 1800 nm, Ø3 mm Active Area
¥20,831
Today
FDG05 Support Documentation
FDG05Ge Photodiode, 220 ns Rise Time, 800 - 1800 nm, Ø5 mm Active Area
¥39,709
3-5 Weeks
FDG50 Support Documentation
FDG50Ge Photodiode, 220 ns Rise Time, 800 - 1800 nm, Ø5 mm Active Area
¥44,103
3-5 Weeks
FDG10X10 Support Documentation
FDG10X10Ge Photodiode, 10 μs Rise Time, 800 - 1800 nm, 10 mm x 10 mm Active Area
¥74,990
3-5 Weeks
Back to Top

InGaAsフォトダイオード、800~2600 nm

Click Image
for Details
FDGA05FGA21FGA01FGA01FCFGA01FCFD10DFGA10FD05D
Item #FGA01FGA01FCFGA015FDGA05FGA21FGA10FD05DFD10D
Key FeatureHigh Speed and Low Capacitance in a TO-46 Can with a Ball LensHigh Speed and Low Capacitance in a Direct Fiber-Coupled FC/PC PackageHigh Speed and Low CapacitanceHigh Speed, High Responsivity, and Low CapacitanceLarge Active Area and High SpeedHigh Speed and Low Dark CurrentLong Wavelength RangeLong Wavelength Range and Large Active Area
Infoinfoinfoinfoinfoinfoinfoinfoinfo
Wavelength Range800 - 1700 nm800 - 1700 nm800 - 1700 nm800 - 1700 nm800 - 1700 nm900 - 1700 nm900 - 2600 nm900 - 2600 nm
Active Area0.01 mm2
(Ø120 µm)
0.01 mm2
(Ø120 µm)
0.018 mm2
(Ø150 µm)
0.196 mm2
(Ø0.5 mm)
3.1 mm2 (Ø2 mm)0.79 mm2 (Ø1 mm)0.20 mm2
(Ø0.5 mm)
0.79 mm2
(Ø1.0 mm)
Rise/Fall Timea300 ps / 300 ps
@ 5 V
300 ps / 300 ps
@ 5 V
300 ps / 300 ps
@ 1550 nm, 5 V
2.5 ns / 2.5 ns
@ 5 V
25 ns / 25 ns
@ 3 V
10 ns / 10 ns
@ 5 V
17 ns / 17 ns
@ 0 V
25 ns / 25 ns
@ 0 V
NEP
(W/Hz1/2)
4.5 x 10-15
@ 1500 nm
4.5 x 10-15
@ 1500 nm
1.3 x 10-14
@ 1550 nm
2.0 x 10-14
@ 1550 nm
6.0 x 10-14
@ 1550 nm
2.5 x 10-14
@ 1550 nm, 5 V
5.0 x 10-13
@ 2300 nm
1.0 x 10-12
@ 2300 nm
Dark Current0.05 nA (Typ.)
@ 5 V
0.05 nA (Typ.)
@ 5 V
0.5 nA (Typ.)
@ 5 V
6 nA (Typ.)
@ 5 V
50 nA (Typ.)
@ 1 V
1.1 nA (Typ.)
@ 5 V
1 µA (Typ.)
@ 0.5 V
3 µA (Typ.)
@ 0.5 V
Junction
Capacitance
2.0 pF (Typ.) @ 5 V2.0 pF (Typ.) @ 5 V1.5 pF (Typ.) @ 5 V10 pF (Typ.) @ 5 V100 pF (Typ.) @ 3 V80 pF (Typ.) @ 5 V140 pF (Typ.) @ 0 V500 pF (Typ.) @ 0 V
PackageTO-46TO-46, FC/PC BulkheadTO-18TO-46TO-5TO-5TO-18TO-18
Compatible
Sockets
STO46S
STO46P
STO46S
STO46P
STO46S
STO46P
STO46S
STO46P
STO5S
STO5P
STO5S
STO5P
STO46S
STO46P
STO46S
STO46P
  • 特に記載がない限り、典型値 RL = 50 Ω
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
FGA01 Support Documentation
FGA01InGaAs Photodiode, 300 ps Rise Time, 800-1700 nm, Ø0.12 mm Active Area
¥9,439
Today
FGA01FC Support Documentation
FGA01FCInGaAs Photodiode, 300 ps Rise Time, 800-1700 nm, Ø0.12 mm Active Area, FC/PC Bulkhead
¥23,923
3-5 Weeks
FGA015 Support Documentation
FGA015InGaAs Photodiode, 300 ps Rise Time, 800-1700 nm, Ø150 µm Active Area
¥8,804
Today
FDGA05 Support Documentation
FDGA05InGaAs Photodiode, 2.5 ns Rise Time, 800-1700 nm, Ø0.5 mm Active Area
¥22,297
Today
FGA21 Support Documentation
FGA21InGaAs Photodiode, 25 ns Rise Time, 800-1700 nm, Ø2 mm Active Area
¥36,291
Today
FGA10 Support Documentation
FGA10InGaAs Photodiode, 10 ns Rise Time, 900-1700 nm, Ø1 mm Active Area
¥24,944
Today
FD05D Support Documentation
FD05DInGaAs Photodiode, 17 ns Rise Time, 900-2600 nm, Ø0.5 mm Active Area
¥19,203
3-5 Weeks
FD10D Support Documentation
FD10DInGaAs Photodiode, 25 ns Rise Time, 900-2600 nm, Ø1.0 mm Active Area
¥34,014
3-5 Weeks