ファイバー出力型レーザー光源:可視域用


  • SM, MM, and PM Sources Available
  • Full Output Powers from 2.5 to 50.0 mW
  • Stable, Low Noise, Constant Power Operation

S1FC660

660 nm, 15.0 mW

Front Panel Display Provides an Enable Button, Laser Power Control, and Display Screen

Related Items


Please Wait
Single Channel Benchtop Laser Sources Selection Guide
SpectrumWavelengthTECLaser TypeCavity TypeOutput Fiber Type
Visible405 - 675 nmNoSemiconductorFabry PerotSM, MM, or PM
405 - 685 nmYesSemiconductorFabry PerotSM
NIR785 - 1550 nmNoSemiconductorFabry PerotSM or PM
705 - 2000 nmYesSemiconductorFabry PerotSM
1310 - 1550 nmYesSemiconductorDFBSM
1900 - 2000 nmN/AFiber LaserFabry PerotSM
MIR2.7 µmN/AFiber LaserFabry PerotSM
Other Fiber-Coupled Laser Sources

特長

  • 波長:
    • シングルモード(SM):405 nm~675 nm
    • マルチモード(MM): 473 nm
    • 偏波保持(PM): 635 nm
  • FC/PCのシングルモードまたはマルチモードファイバーインターフェイス
  • 出力レベルはノブの回転またはBNC変調入力端子への入力電圧で調整可能
  • 安定で低ノイズな一定出力動作
  • インターロック回路は2.5 mmモノラルジャックに接続

当社では、可視域のスペクトルで発光するシングルモードファイバ、マルチモードファイバ、もしくは偏波保持ファイバ出力のレーザ光源をご用意しています。このベンチトップ型のレーザ光源には、いずれもピグテール付きファブリペロー型半導体レーザと電流コントローラが内蔵されています。

レーザ光源の前面パネルには、出力値(mW)を表示するデイスプレイ、ON/OFFキー、Enableボタン、そしてレーザ出力調整ノブがあります。背面パネルには、外部からのDCまたは正弦波電圧信号によって半導体レーザの駆動電流を制御するためのBNC入力端子と、インターロック用リモートコントロール入力端子が付いています。

当社のシングルチャンネルベンチトップ型レーザ光源の全てのラインナップは右の表をご参照ください。

Key Specificationsa
Item #S1FC405S1FC635S1FC637S1FC660S1FC675S1FC473MMS1FC635PM
Fiber TypeSMMMPM
Wavelength405 nm635 nm637 nm660 nm675 nm473 nm635 nm
Spectrum--
Full Output Power8.0 mW
(Min)
2.5 mW
(Min)
8.0 mW
(Min)
15.0 mW
(Min)
2.5 mW
(Min)
50.0 mW
(Max)
2.5 mW
(Min)
Power Stability15 min: ±0.05 dB, 24 hr: ±0.1 dB
(After 1 hr Warm-up at 25 ± 10 °C Ambient)
  • 仕様の詳細は、「仕様」タブでご覧いただけます。

Click to Enlarge
マルチモードパッチケーブルM43L01
が接続されたS1FC473MM
Single Mode Source Specifications
Item #S1FC405S1FC635S1FC637S1FC660S1FC675
WavelengthMinimum395 nm625 nm630 nm645 nm660 nm
Typical405 nm635 nm637 nm660 nm675 nm
Maximum415 nm640 nm645 nm665 nm680 nm
Spectruma
Minimum Full Output Power8.0 mW2.5 mW8.0 mW15.0 mW2.5 mW
Setpoint Resolution0.01 mW0.01 mW0.01 mW0.01 mW0.01 mW
Laser Class3B3R3B3B3R
Fiber
Fiber TypeS405-XPSM600SM600SM600SM600
Mode Field Diameterb3.3 µm @ 405 nm3.6 - 5.3 µm3.6 - 5.3 µm3.6 - 5.3 µm3.6 - 5.3 µm
Numerical Aperture0.120.10 - 0.140.10 - 0.140.10 - 0.140.10 - 0.14
Output Fiber ConnectorFC/PC, Wide 2.1 mm Key Compatible
Electrical
Power Stability15 min: ±0.05 dB, 24 hr: ±0.1 dB
(After 1 hr Warm-Up at 25 ± 10 °C Ambient)
Display Accuracy±10%
Adjustment Range~0 mW to Full Power
Input Power115 VAC / 230 VAC (Switch Selectable) 50 - 60 Hz
Modulation Input0 - 5 V = 0 - Full Power, DC or Sine Wave Input Only
Modulation
Bandwidth
5 kHz Full Depth of Modulation
30 kHz Small Signal Modulation
Environmental
Operating Temperature15 to 35 °C
Storage Temperature0 to 50 °C
  • スペクトルプロット図は典型値を示しており、実際のスペクトルは製造ロットにより異なります。詳細については当社までお問い合わせください。
  • モードフィールド径(MFD)は公称値として規定されています。
Multimode Source Specifications
Item #S1FC473MM
Wavelength473 nm
Maximum Output Powera50.0 mW
Stability15 min: ±0.05 dB, 24 hr: ±0.1 dB
(After 1 hr Warm-Up at 25 ± 10 °C Ambient)
Display Accuracy±10 %
Setpoint Resolution0.1 mW
Adjustment Range~0 mW to Full Power
AC Input115 / 230 VAC (Switch Selectable) 50 - 60 Hz
Modulation Input0 - 5 V = 0 - Full Power, DC or Sine Wave Input Only
Modulation Bandwidth5 kHz Full Depth of Modulation
30 kHz Small Signal Modulation
FiberFG105UCA
Environmental
Operating Temperature15 to 35 °C
Storage Temperature0 to 50 °C
  • 出力パワー範囲は0~50.0 mWです。個々の製品ごとに最大出力はバラつきますが、最低でもこの値より高くなります。
Polarization-Maintaining Source Specifications
Item #S1FC635PM
Wavelengtha635 nm
Minimum Full Output Power2.5 mW
Stability15 min: ±0.05 dB, 24 hr:±0.1 dB
(After 1 hr Warm-Up at 25 ± 10 °C Ambient)
Display Accuracy±10%
Setpoint Resolution0.01 mW
Adjustment Range~0 mW to Full Power
Minimum Polarization Extinction Ratio15 dB
Environmental
Operating Temperature15 to 35 °C
Storage Temperature0 to 50 °C
AC Input115 VAC / 230 VAC (Switch Selectable) 50 - 60 Hz
Modulation Input0 - 5 V = 0 - Full Power, DC or Sine Wave Input Only
Modulation Bandwidth5 kHz Full Depth of Modulation
30 kHz Small Signal Modulation
FiberPM630-HP
  • 仕様表の情報は参考データとして提示しています。ピグテール付き半導体レーザは個別製品ごとに特性が異なるので、製品に添付されるスペックシートに個別のデータを記載しています。

変調入力端子

BNCメス型

BNC Female

0~5 Vまで、50 Ω

リモートインターロック入力端子

2.5 mmモノラルジャック

 

2.5 mm Phono Jack

レーザのON状態をENABLEとするには、端子間を付属のプラグまたは外部スイッチのようなユーザ所有のデバイスで短絡する必要があります。

Laser Safety and Classification

Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. 

Laser Glasses Laser Curtains Blackout Materials
Enclosure Systems Laser Viewing Cards Alignment Tools
Shutter and Controllers Laser Safety Signs

Safe Practices and Light Safety Accessories

  • Laser safety eyewear must be worn whenever working with Class 3 or 4 lasers.
  • Regardless of laser class, Thorlabs recommends the use of laser safety eyewear whenever working with laser beams with non-negligible powers, since metallic tools such as screwdrivers can accidentally redirect a beam.
  • Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
  • Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
  • Laser Safety Curtains and Laser Safety Fabric shield other parts of the lab from high energy lasers.
  • Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
  • Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
  • A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
  • All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
  • Do not place laser beams at eye level.
  • Carry out experiments on an optical table such that all laser beams travel horizontally.
  • Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
  • Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
  • Operate a laser at the minimum power necessary for any operation.
  • If possible, reduce the output power of a laser during alignment procedures.
  • Use beam shutters and filters to reduce the beam power.
  • Post appropriate warning signs or labels near laser setups or rooms.
  • Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
  • Do not use Laser Viewing Cards in place of a proper Beam Trap.

 

Laser Classification

Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:

Class Description Warning Label
1 This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.  Class 1
1M Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.  Class 1M
2 Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).  Class 2
2M Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.  Class 2M
3R Class 3R lasers produce visible and invisible light that is hazardous under direct and specular-reflection viewing conditions. Eye injuries may occur if you directly view the beam, especially when using optical instruments. Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser; however, this presents a low risk level to injury. Visible, continuous-wave lasers in this class are limited to 5 mW of output power.  Class 3R
3B Class 3B lasers are hazardous to the eye if exposed directly. Diffuse reflections are usually not harmful, but may be when using higher-power Class 3B lasers. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. Lasers of this class must be equipped with a key switch and a safety interlock; moreover, laser safety signs should be used, such that the laser cannot be used without the safety light turning on. Laser products with power output near the upper range of Class 3B may also cause skin burns.  Class 3B
4 This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.  Class 4
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign.  Warning Symbol

Posted Comments:
user  (posted 2024-01-23 11:27:40.983)
Which is the maximum output power of the model S1FC405?
ksosnowski  (posted 2024-01-23 11:50:22.0)
Hello, thanks for reaching out to Thorlabs. Each unit is calibrated to achieve the maximum power for the particular laser diode used in the device. Due to variations in the coupling process, no two units will have the same exact maximum power. For S1FC405, we guarantee at least 8.0 mW on each unit we build. Ensuring that the patch cables used are always cleaned is an important measure to maintaining the output over the life of the laser, as any debris can cause backreflections which may damage the laser inside and cause reduced power. I have reached out directly to discuss this in further detail.
Nazim Bharmal  (posted 2023-07-14 08:04:48.137)
In your manual, there is no information regarding the modulation input connector type. That is only on the webpage (in small font) and via the 'Pin Diagrams' tab (arguably hidden). So I'd suggest modifying the manual to include the specification.
cdolbashian  (posted 2023-07-21 11:50:13.0)
Thank you for reaching out to us with this feedback. Within the manual, under the "Modulating the Laser Output" section (5.5), the first bullet point describes the required electrical connection. Regarding the hidden pin diagrams tab, we include such a tab on all pages which have devices with electrical outputs so that the information is visible and easily accessible without having to find it within a manual (in which it is also included). I have reached out to you directly to clarify this further.
Tatsuo Yamaguchi  (posted 2023-07-05 13:26:23.857)
お世話になっております。 御社のファイバレーザー光源S1FC660を購入したものです。  こちらの光源の光量のツマミを回したときの光量の安定するまでの時間についての仕様などはございますでしょうか?  感覚的な記述で恐縮なのですが、1mW→3mWまで光量を上げると、一度4mW程度まで上がりそのあと3mWまで下がるのに10-20秒程度かかっているという印象です。 よろしくお願いいたします。
cdolbashian  (posted 2023-07-14 04:11:48.0)
Thank you for reaching out to us with this inquiry. A tech support agent has contacted your from our local office.
user  (posted 2021-04-23 01:45:27.227)
In my optical system,maybe about 20% laser power will back reflection into laser source.I am worried about back reflection light will damage laser source.Does this laser source include isolator?Thank you.
YLohia  (posted 2021-04-23 11:35:06.0)
Thank you for contacting Thorlabs. Unfortunately, such a high back reflection will damage the source since this doesn't come with an integrated isolator. That being said, a custom fiber based isolator for 635 nm can be ordered using the form on this page (https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3260) and be used right on the output to reduce the amount of backreflections going into the laser cavity.
user  (posted 2019-05-21 14:13:05.223)
In the product description you state "... All of our fiber-pigtailed lasers utilize an angled fiber ferrule at the internal laser/fiber launch point to minimize reflections back into the laser diode, thereby increasing the stability of the laser diode's output." And yet the specifications call out an FC/PC and not an FC/APC. I am confused. Can you please clarify?
YLohia  (posted 2019-05-21 03:00:34.0)
Hello, thank you for your feedback and bringing this typo to our attention. The specs are correct -- the items on this page (as of 5/2019) are FC/PC and not FC/APC (APC connections can be quoted as custom items by emailing techsupport@thorlabs.com). I am working with our technical marketing team to get this resolved. Please accept our apologies for any confusion caused by this.
Andrey Kuznetsov  (posted 2019-05-01 14:28:16.583)
NOTICE to Customers: I compared 630HP and SM600 fibers when connected to these Fiber sources. These sources have an internal SM600 fiber from the diode to the front bulkhead connector. Thorlabs rightly says to use cables of the same type, however even though 630HP and SM600 share almost exactly the same parameters like NA, etc, based on my tests: 630HP insertion can cause output attenuation up to 95%, while SM600 fiber attenuation was only up to 20%. The issue I had was that when inserting a fiber into the bulkhead, with the key polarizer aligned, rotating and tightening the connector would result in an unpredictable attenuation of light output as measured with a photodiode. We're now switching to SM600 fibers to avoid severe attenuation losses due to fiber coupling issues. Thorlabs should explicitly state this on the Overview page in bold letters that customers must use SM600 fiber to avoid huge attenuation losses due to coupling.
mmcclure  (posted 2019-05-02 10:52:01.0)
Hello, thank you for your feedback. Yes, for our single mode fiber-coupled laser sources, we recommend using a single mode patch cable that is the same fiber type as the fiber-pigtailed laser inside the device. We will make this recommendation more explicit on the webpage.
akuznetsov  (posted 2018-09-27 19:42:45.16)
What is the fiber core size inside these laser bench sources? What core size fiber patch cable should I use to optimize light throughput?
YLohia  (posted 2018-09-28 11:33:03.0)
Hello, the fiber types used are listed in the Specs tab: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1500&tabname=Specs along with the MFD and NA. In order to maximize coupling efficiency, you should use the same fiber or a multimode fiber with a larger MFD and NA than the one used in the benchtop unit.
akuznetsov  (posted 2018-09-27 17:33:36.43)
We have a S1FC637 and we see that 637*2=1274nm wavelength is also present on the output, is this normal? Shouldn't there be a filter in the unit to prevent the doublet from outputting? We are using the 637nm to excite emission in the NIR so the 1274nm output from the laser is interfering with out results.
YLohia  (posted 2018-10-03 03:02:17.0)
Hello, thank you for contacting Thorlabs. This is certainly not normal and not expected of a GaAs-based chip. I took a few scans of the S1FC637 with our OSA207C optical spectrum analyzer and did not find any significant emission around 1274nm (at max output power setting). Based on our correspondence, the issue was being caused by the small fraction of the stimulus light (1274nm) being fed into the spectrometer since the stimulus and collection path were the same.
melanie  (posted 2018-09-04 08:20:38.627)
1.What is the laser threshold power for S1FC635PM ? 2.Would you consider making a PM fibre-coupled green laser ?
nbayconich  (posted 2018-09-25 10:17:46.0)
Thank you for contacting Thorlabs. We do not specify a threshold power for the S1FC635PM benchtop source however the setpoint resolution is 0.01mW and can be adjusted from 0 - 2.5mW. The threshold current for the diode is about 50mA and the minimum range is set to just below the lasing threshold. The output is mostly off but there will be a very small amount of light still present since a small amount of light is needed for the power control circuit to be active. I will reach out to you directly to discuss our custom capabilities.
melanie  (posted 2017-03-23 13:05:57.74)
I have 2 questions: 1) If connected to one of your PM patchcords, what will be the typical polarisation extinction when the light emerges from the patchcord ? 2) If we turn the laser right down, will it become incoherent ? (this is useful to us) Thanks, Melanie
tfrisch  (posted 2017-03-30 01:17:52.0)
Hello Melanie, thank you for contacting Thorlabs. When used with a PM patch cable, S1FC635PM has an extinction ratio of >20dB. As for the laser power, this unit is not intended for operation below the threshold current of the diode. I will reach out to you directly to discuss your application.
acable  (posted 2008-08-15 10:52:31.0)
Related Products… please think about the related products that are most often used with the product that is being featured. In the case of the fiber coupled laser sources it would probably be: patch cable, collimation package, and perhaps a mirror mount and adapter to hold and aim the collimated light field. I would even think about adding a little text by each price box with a labeled photo of the parts all connected together, with a kit being offered for each of the wavelengths. I would then use the Related Products links (and refer to them in the text) to allow the customer to put together their own parts list (longer cables, different collimation packages, different mounts).
Back to Top

シングルモードファイバ出力型レーザ光源

  • 405~675 nmの5種類の波長をご用意
  • FC/PCシングルモードファイバーインターフェイス
  • 最大出力:2.5 mW~15.0 mW
  • ファイバーパッチケーブルは別売りでご用意
  • カスタム波長もご提供可能(当社までお問い合わせください)

こちらのシングルモードファイバ出力型レーザ光源は、ピグテール付きファブリペロー型半導体レーザと電流コントローラを1つのベンチトップ型ユニットに納めた製品です。各ユニット内のファブリペローレーザにはシングルモードファイバが接続されており、それらは前面パネルに取り付けられたFC/PCバルクヘッド(ワイドキー、ナローキーに対応)に接続されています。当社では前面パネルのバルクヘッドに接続するためのシングルモードファイバーパッチケーブルをご用意しております。接続損失を抑えるためにはレーザ装置内部で使用されているファイバと同じ種類のファイバーパッチケーブルを使用することをお勧めいたします。内部で使用されているファイバについては「仕様」タブをご覧ください。後方反射によるノイズを低減するために、レーザ光源に接続されたFC/PCコネクタに対して、ハイブリッド型のFC/PC-FC/APCケーブルのご使用をお勧めいたします。

前面パネルには、出力値(mW)を表示するデイスプレイ、ON/OFFキー、Enableボタン、そしてレーザ出力調整ノブがあります。背面パネルには、外部からのDCまたは正弦波電圧信号によって半導体レーザの駆動電流を制御するための入力端子と、インターロック用リモートコントロール入力端子が付いています。

注:この光源に他のファイバを接続したり、取り外したりする際には、レーザ出力をOFFにしてください。パワーレベルが10 mW以上の場合には、特にご注意ください。

635 nmの光源を使用する用途には、USBインターフェイス付きの小型ファイバ出力レーザ光源もご用意しています。 オプトジェネティクス用途には、マルチモードファイバを組み込んだ473 nmベンチトップ型レーザ光源をご用意しています。偏光出力用には、偏波保持ファイバを組み込んだレーザ光源も取り揃えています(下記をご参照ください)。波長可変レーザが必要な通信用途については、当社のベンチトップ型波長可変レーザ光源のページをご覧ください。カスタム波長のレーザ光源、またはFC/APCファイバーインターフェイスをご希望の場合には、当社までご連絡ください。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
S1FC405 Support Documentation
S1FC405Fabry-Perot Benchtop Laser Source, 405 nm, 8.0 mW, FC/PC
¥271,297
7-10 Days
S1FC635 Support Documentation
S1FC635Fabry-Perot Benchtop Laser Source, 635 nm, 2.5 mW, FC/PC
¥228,006
Today
S1FC637 Support Documentation
S1FC637Fabry-Perot Benchtop Laser Source, 637 nm, 8.0 mW, FC/PC
¥249,651
7-10 Days
S1FC660 Support Documentation
S1FC660Fabry-Perot Benchtop Laser Source, 660 nm, 15.0 mW, FC/PC
¥248,023
7-10 Days
S1FC675 Support Documentation
S1FC675Fabry-Perot Benchtop Laser Source, 675 nm, 2.5 mW, FC/PC
¥233,052
7-10 Days
Back to Top

マルチモードファイバ出力型レーザ光源

ファイバ出力型レーザS1FC473MMは出力パワー50.0 mW、出力波長473 nmで、数多くのオプトジェネティクス用途に適した光源となっています。この製品は、ピグテール付きFP半導体レーザと電流コントローラが1つのベンチトップ型ユニットに納められています。ユニットの出力は、5 kHzの全幅および30kHzの小信号で外部変調することもできます。出力はFC/PCコネクタ付きのマルチモードファイバFG105UCAとなっています。このユニットは当社の様々な種類のマルチモードパッチケーブルならびにオプトジェネティクス製品に対応しています。

前面パネルには、出力値(mW)が表示できるディスプレイ、ON/OFFキー、Enableボタン、そしてレーザ出力調整ノブがあります。背面パネルには、外部からの電圧信号によって半導体レーザの駆動電流を制御するための入力端子とインターロック用リモートコントロール入力端子が付いています。詳しい操作方法は、下の赤い資料アイコン(docs icon)をクリックして表示されるマニュアルをご覧ください。

注:この光源に他のファイバを接続したり、取り外したりする際には、レーザ出力をOFFにしてください。パワーレベルが10 mW以上の場合には、特にご注意ください。

当社ではファイバ出力型LEDやその他のファイバ出力レーザ光源も取り揃えています。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
S1FC473MM Support Documentation
S1FC473MMCustomer Inspired! Fiber-Coupled Laser Source, 473 nm, 50.0 mW, MM Fiber, FC/PC
¥1,133,660
7-10 Days
Back to Top

偏波保持ファイバ出力型レーザ光源

  • 出力波長:635 nm
  • FC/PCシングルモード偏波保持ファイバーインターフェイス
  • 最大出力:2.5 mW
  • ファイバーパッチケーブルは別売りでご用意
  • 偏波保持ファイバのスロー軸がFC/PCバルクヘッドコネクタのナローキーにアライメント
  • 可視域のカスタム波長もご提供可能(当社までお問い合わせください)

こちらの偏波保持ファイバ出力型レーザ光源は、ピグテール付きのファブリペローレーザがベンチトップ型ユニットに納められています。半導体レーザにはシングルモード偏波保持ファイバが結合されており、ユニット前面パネルに設置されたFC/PCバルクヘッドから出力されます。半導体レーザの偏光軸が偏波保持ファイバのスロー軸と合致するようファイバーアライメントが維持されています。また、偏波保持ファイバのスロー軸はベンチトップ型ユニット前面パネルのFC/PCバルクヘッドコネクタのナローキーにも合うように設計されています。当社では前面パネルのバルクヘッドに接続するための偏波保持ファイバーパッチケーブルをご用意しております。接続損失を抑えるためにはレーザ装置内部で使用されているファイバと同じ種類のファイバーパッチケーブルを使用することをお勧めいたします。内部で使用されているファイバについては「仕様」タブをご覧ください。後方反射によるノイズを低減するために、レーザ光源に接続されたFC/PCコネクタに対して、ハイブリッド型のFC/PC-FC/APCケーブルのご使用をお勧めいたします。

前面パネルには、出力値(mW)が表示できるディスプレイ、ON/OFF キー、Enableボタン、そしてレーザ出力調整ノブがあります。背面パネルには、外部からの電圧信号によって半導体レーザの駆動電流を制御するための入力端子とインターロック用リモートコントロール入力端子が付いています。

注:この光源に他のファイバを接続したり、取り外したりする際には、レーザ出力をOFFにしてください。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
S1FC635PM Support Documentation
S1FC635PMFiber-Coupled Laser Source, 635 nm, 2.5 mW, PM Fiber, FC/PC
¥269,671
Today