感光性シングルモードファイバ
- Enhanced Photosensitivity
- Low Loss Photosensitive Fibers
- Cladding Mode Suppressed Photosensitive Fibers
- Select Cut-Off Photosensitive Fibers
Photosensitive Single Mode
Fiber Cross Section
(Not to
Scale)
Dual Acrylate
Coating
Cladding
Doped Silica
Core
Application Idea
UV lasers can be used to "write" a fiber Bragg grating on photosensitive fibers.
GF1
1500 - 1600 nm,
10.5 µm MFD
Please Wait
感光性シングルモードファイバ
当社では紫外線に対して高い感度を持つ、幅広い種類の感光性シングルモードファイバをご提供しています。このファイバは、伝送ファイバ接合時のスプライス損失が低く、通信システム用にファイバーブラッググレーティングを書き込むなど幅広い種類の用途にお使いいただけます。各製品の仕様については下表をご覧ください。当社では、接続の前処理としてこれらの光ファイバからバッファを除去する工具としてT06S13をお勧めしています。
Item # | Type | Operating Wavelength | Mode Field Diameter | Cut-Off Wavelength |
---|---|---|---|---|
GF1 | Standard | 1500 - 1600 nm | 9.3 ± 0.5 µm at 1310 nm 10.5 ± 1.0 µm at 1550 nm | 1260 ± 75 nm |
GF3 | Standard | 1500 - 1600 nm | 7.5 ± 0.5 µm at 1550 nm | 1350 ± 50 nm |
GF1B | Low Loss | 1500 - 1600 nm | 10.4 ± 0.8 µm at 1550 nm | 1260 ± 100 nm |
GF4A | Cladding Mode Offset | 1500 - 1600 nm | 4.0 ± 0.3 µm at 1550 nm | 1350 ± 100 nm |
PS1060 | Select Cut-Off | 980 - 1060 nm | 6.2 ± 0.8 µm at 1060 nm | 920 ± 50 nm |
PS-PM980 | Polarization Maintaining | 970 - 1550 nm | 6.6 ± 1.0 µm at 980 nm | 900 ± 70 nm |
Quick Links |
---|
Damage at the Air / Glass Interface |
Intrinsic Damage Threshold |
Preparation and Handling of Optical Fibers |
レーザによる石英ファイバの損傷
このチュートリアルではコネクタ無し(素線)ファイバ、コネクタ付きファイバ、およびレーザ光源に接続するその他のファイバ部品に関連する損傷メカニズムを詳しく説明しています。そのメカニズムには、空気/ガラス界面(自由空間結合時、またはコネクタ使用時)ならびにファイバ内における損傷が含まれます。ファイバ素線、パッチケーブル、または溶融型カプラなどのファイバ部品の場合、損傷につながる複数の可能性(例:コネクタ、ファイバ端面、機器そのもの)があります。ファイバが対処できる最大パワーは、常にそれらの損傷メカニズムの中の最小の限界値以下に制限されます。
損傷閾値はスケーリング則や一般的なルールを用いて推定することはできますが、ファイバの損傷閾値の絶対値は利用方法やユーザ定義に大きく依存します。このガイドは、損傷リスクを最小に抑える安全なパワーレベルを推定するためにご利用いただくことができます。適切な準備と取扱い方法に関するガイドラインにすべて従えば、ファイバ部品は規定された最大パワーレベルで使うことができます。最大パワーの値が規定されていない場合は、部品を安全に使用するために下表の「実用的な安全レベル」の範囲に留めてご使用ください。 パワー処理能力を低下させ、ファイバ部品に損傷を与える可能性がある要因は、ファイバ結合時のミスアライメント、ファイバ端面の汚れ、あるいはファイバそのものの欠陥などですが、これらに限られるわけではありません。特定の用途におけるファイバのパワー処理能力に関するお問い合わせは当社までご連絡ください。
Click to Enlarge
損傷のないファイバ端
Click to Enlarge
損傷のあるファイバ端
空気/ガラス界面における損傷
空気/ガラス界面ではいくつかの損傷メカニズムが存在する可能性があります。自由空間結合の時、またはコネクタで2本のファイバを結合した時、光はこの界面に入射します。高強度の光は端面を損傷し、ファイバのパワー処理能力の低下や恒久的な損傷につながる場合があります。コネクタ付きのファイバで、コネクタがエポキシ接着剤でファイバに固定されている場合、高強度の光によって発生した熱により接着剤が焼けて、ファイバ端面に残留物が残る可能性があります。
Estimated Optical Power Densities on Air / Glass Interfacea | ||
---|---|---|
Type | Theoretical Damage Thresholdb | Practical Safe Levelc |
CW (Average Power) | ~1 MW/cm2 | ~250 kW/cm2 |
10 ns Pulsed (Peak Power) | ~5 GW/cm2 | ~1 GW/cm2 |
ファイバ素線端面での損傷メカニズム
ファイバ端面での損傷メカニズムはバルクの光学素子の場合と同様なモデル化ができ、UV溶融石英(UVFS)基板の標準的な損傷閾値を石英ファイバに当てはめることができます。しかしバルクの光学素子とは異なり、光ファイバの空気/ガラス界面においてこの問題に関係する表面積やビーム径は非常に小さく、特にシングルモードファイバの場合はそれが顕著です。 パワー密度が与えられたとき、ファイバに入射するパワーは、小さいビーム径に対しては小さくする必要があります。
右の表では光パワー密度に対する2つの閾値が記載されています。理論的な損傷閾値と「実用的な安全レベル」です。一般に、理論的損傷閾値は、ファイバ端面の状態も結合状態も非常に良いという条件で、損傷のリスク無しにファイバの端面に入射できる最大パワー密度の推定値を表しています。「実用的な安全レベル」のパワー密度は、ファイバ損傷のリスクが極めて小さくなる値を示しています。ファイバまたはファイバ部品をこの実用的な安全レベルを超えて使用することは可能ですが、その時は取扱い上の注意事項を適切に守り、使用前にローパワーで性能をテストする必要があります。
シングルモードの実効面積の計算
シングルモードファイバの実効面積は、モードフィールド径(MFD)、すなわちファイバ内の光が伝搬する部分の断面積によって定義されます。この面積にはファイバのコアとクラッドの一部が含まれます。シングルモードファイバとの結合効率を良くするためには、入射ビーム径をファイバのモードフィールド径に合致させなければなりません。
例として、シングルモードファイバSM400を400 nmで使用した時のモードフィールド径(MFD)は約Ø3 µmで、SMF-28 Ultraを1550 nmで使用したときのモードフィールド径(MFD)はØ10.5 µmです。これらのファイバの実効面積は下記の通り計算します。
SM400 Fiber: Area = Pi x (MFD/2)2 = Pi x (1.5 µm)2 = 7.07 µm2 = 7.07 x 10-8 cm2
SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 µm)2 = 86.6 µm2 = 8.66 x 10-7 cm2
ファイバ端面が対応できるパワーを推定するには、パワー密度に実効面積を乗じます。なおこの計算は均一な強度プロファイルを想定しています。しかしほとんどのレーザービームでは、シングルモード内でガウス分布を示すため、ビームの端よりも中央のパワー密度が高くなります。よって、これらの計算は損傷閾値または実用的安全レベルに対応するパワーとは若干異なることを考慮する必要があります。連続光源を想定して上記のパワー密度の推定値を使用すると、それぞれのパワーは下記のように求められます。
SM400 Fiber: 7.07 x 10-8 cm2 x 1 MW/cm2 = 7.1 x 10-8 MW = 71 mW (理論的損傷閾値)
7.07 x 10-8 cm2 x 250 kW/cm2 = 1.8 x 10-5 kW = 18 mW (実用的な安全レベル)
SMF-28 Ultra Fiber: 8.66 x 10-7 cm2 x 1 MW/cm2 = 8.7 x 10-7 MW = 870 mW (理論的損傷閾値)
8.66 x 10-7 cm2 x 250 kW/cm2 = 2.1 x 10-4 kW = 210 mW (実用的な安全レベル)
マルチモードの実効面積
マルチモードファイバの実効面積は、そのコア径によって定義されますが、一般にシングルモードファイバのMFDよりもはるかに大きくなります。当社では最適な結合を得るためにコア径のおよそ70~80%にビームを集光することをお勧めしています。マルチモードファイバでは実効面積が大きくなるほどファイバ端面でのパワー密度は下がるので、より大きな光パワー(通常キロワットオーダ)を入射しても損傷は生じません。
フェルール・コネクタ付きファイバに関する損傷メカニズム
コネクタ付きシングルモード石英ファイバに入力可能なパワー処理限界値(概算)を示したグラフ。各線はそれぞれの損傷メカニズムに応じたパワーレベルの推定値を示しています。 入力可能な最大パワーは、損傷メカニズムごとに制限されるパワーのうちの一番小さな値(実線で表示)によって制限されます。
コネクタ付きファイバのパワー処理能力に関しては、ほかにも考慮すべき点があります。ファイバは通常、エポキシ接着剤でセラミック製またはスチール製のフェルールに取り付けられています。光がコネクタを通してファイバに結合されると、コアに入射せずにファイバを伝搬する光は散乱されてファイバの外層からフェルール内へ、さらにフェルール内でファイバを保持する接着剤へと伝搬します。光の強度が大きいとエポキシ接着剤が焼け、それが蒸発して残留物がコネクタ端面に付着します。これによりファイバ端面に局所的に光を吸収する部分ができ、それに伴って結合効率が減少して散乱が増加するため、さらなる損傷の原因となります。
エポキシ接着剤に関連する損傷は、いくつかの理由により波長に依存します。一般に、光の散乱は長波長よりも短波長で大きくなります。短波長用のMFDの小さなシングルモードファイバへの結合時には、ミスアライメントに伴ってより多くの散乱光が発生する可能性があります。
エポキシ樹脂が焼損するリスクを最小に抑えるために、ファイバ端面付近のファイバとフェルール間にエポキシ接着剤の無いエアギャップを有するファイバーコネクタを構築することができます。当社の高出力用マルチモードファイバーパッチケーブルでは、このような設計のコネクタを使用しております。
複数の損傷メカニズムがあるときのパワー処理限界値を求める方法
ファイバーケーブルまたはファイバ部品において複数の損傷要因がある場合(例:ファイバーパッチケーブル)、入力可能なパワーの最大値は必ずファイバ部品構成要素ごとの損傷閾値の中の一番小さな値により決まります。この値が一般的にはパッチケーブルの端面に入射可能な最大のパワーを表します(出力パワーではありません)。
右のグラフは、シングルモードパッチケーブルにおけるファイバ端面での損傷とコネクタでの損傷に伴うパワー処理限界の推定値を例示しています。 ある波長におけるコネクタ付きファイバの総合的なパワー処理限界値は、その波長に対する2つの制限値の小さい方の値(実線)によって制限されます。488 nm付近で使用しているシングルモードファイバは主にファイバ端面の損傷(青い実線)によって制限されますが、1550 nmで使用しているファイバはコネクタの損傷(赤い実線)によって制限されます。
マルチモードファイバの実効面積はコア径で定義され、シングルモードファイバの実効面積より大きくなります。その結果、ファイバ端面のパワー密度が小さくなり、大きな光パワー(通常キロワットオーダ)を入射してもファイバに損傷は生じません(グラフには表示されていません)。しかし、フェルール・コネクタの損傷による限界値は変わらないため、マルチモードファイバが処理できる最大パワーはフェルールとコネクタによって制限されることになります。
上記の値は、取り扱いやアライメントが適切で、それらによる損傷が生じない場合のパワーレベルです。また、ファイバはここに記載されているパワーレベルを超えて使用されることもあります。しかし、そのような使い方をする場合は一般に専門的な知識が必要で、まずローパワーでテストして損傷のリスクを最小限に抑える必要があります。その場合においても、ハイパワーで使用するファイバ部品は消耗品と捉えた方が良いでしょう。
ファイバ内の損傷閾値
空気/ガラス界面で発生する損傷に加え、ファイバのパワー処理能力はファイバ内で発生する損傷メカニズムによっても制限されます。この制限はファイバ自体が本質的に有するもので、すべてのファイバ部品に適用されます。ファイバ内の損傷は、曲げ損失による損傷とフォトダークニングによる損傷の2つに分類されます。
曲げ損失
ファイバが鋭く曲げられると、コア内を伝搬する光がコア/クラッド界面において反射する際に、その反射角が全反射臨界角よりも大きくなります。曲げ損失は、このように内部全反射ができなくなることにより生じる損失です。このような状況下では、光はファイバから局所的に漏れだします。漏れる光のパワー密度は一般に大きく、ファイバのコーティングや補強チューブが焼損する可能性があります。
特殊ファイバに分類されるダブルクラッドファイバは、コアに加えてファイバのクラッド(2層目)も導波路として機能するため、曲げ損失による損傷のリスクが抑えられます。クラッドと被覆の界面の臨界角をコアとクラッドの界面の臨界角より大きくすることで、コアから漏れた光はクラッド内に緩く閉じ込められます。その後、光はセンチメートルからメートルオーダーの距離に渡って漏れ出しますが、局所的ではないため損傷リスクは最小に留められます。当社ではメガワットレベルの大きなパワーにも対応するNA 0.22のダブルクラッドマルチモードファイバを製造、販売しております。
フォトダークニング
もう1つのファイバ内の損傷メカニズムとして、特にコアにゲルマニウムが添加されたファイバをUVや短波長の可視光で使用した時に起こるフォトダークニングまたはソラリゼーションがあります。これらの波長で使用されたファイバは時間の経過とともに減衰量が増加します。 フォトダークニングが発生するメカニズムはほとんど分かっていませんが、その現象を緩和するファイバはいくつか開発されています。例えば、水酸イオン(OH)が非常に低いファイバはフォトダークニングに耐性があることが分かっています。またフッ化物などのほかの添加物もフォトダークニングを低減させる効果があります。
しかし、上記の対応をとったとしても、UV光や短波長に使用したファイバはいずれフォトダークニングが生じます。よってこれらの波長で使用するファイバは消耗品としてお考えください。
光ファイバの準備ならびに取扱い方法
一般的なクリーニングならびに操作ガイドライン
この一般的なクリーニングならびに操作ガイドラインはすべてのファイバ製品向けにお勧めしております。さらに付属資料やマニュアルに記載された個々の製品に特化したガイドラインも遵守してください。損傷閾値の計算は、すべてのクリーニングおよび取扱い手順に適切に従ったときにのみ適用することができます。
(コネクタ付き、またはファイバ素線に関わらず)ファイバを設置または組み込む前に、すべての光源はOFFにしてください。これにより、損傷の可能性のあるコネクタまたはファイバの脆弱な部分に集光されたビームが入射しないようにすることができます。
ファイバやコネクタ端面の品質がファイバのパワー処理能力に直結します。ファイバを光学系に接続する前に必ずファイバ端を点検してください。端面はきれいで、入射光の散乱を招く汚れや汚染物質があってはなりません。ファイバ素線は使用前にクリーブし、クリーブの状態が良好であることを確認するためにファイバ端面の点検をしてください。
ファイバを光学系に融着接続する場合、ハイパワーで使用する前にまずローパワーで融着接続の状態が良いことを確認してください。融着接続の品質が良くないと接続面での散乱が増え、ファイバ損傷の原因となる場合があります。
システムのアライメントや光結合の最適化などの作業はローパワーで行ってください。これによりファイバの(コア以外の)他の部分の露光が最小に抑えられます。ハイパワーのビームがクラッド、被覆またはコネクタに集光された場合、散乱光による損傷が発生する可能性があります。
ハイパワーでファイバを使用するための要点
光ファイバやファイバ部品は一般には安全なパワー限界値内で使用する必要がありますが、アライメントや端面のクリーニングがとても良い理想的な条件下では、ファイバ部品のパワー限界値を上げることができる場合があります。入力または出力パワーを増加させる前に、システム内のファイバ部品の性能と安定性を確認し、またすべての安全ならびに操作に関する指示に従わなければなりません。下記はファイバ内またはファイバ部品内の光パワーをの増大させること加を検討していするときに役立つご提案です。
ファイバースプライサを使用してファイバ部品をシステムに融着接続すると、空気/ファイバ界面での損傷の可能性を最小化できます。品質の高い融着接続が実現されるよう、すべて適切なガイドラインに則って実施する必要があります。融着接続の状態が悪いと、散乱や融着接続面での局所的な加熱などが発生し、ファイバを損傷する可能性があります。
ファイバまたはファイバ部品の接続後、ローパワーでシステムのテストやアライメントを実施してください。システムパワーを必要な出力パワーまで徐々に上昇させ、その間、定期的にすべての部品が適切にアライメントされ、結合効率が入力パワーによって変動していないことを確認します。
ファイバを鋭く曲げると曲げ損失が発生し、ファイバのストレスを受けた部分から光が漏れる可能性があります。ハイパワーで使用している時は、大量の光が小さな局所領域(歪みのある領域)から流出すると局所的に加熱され、ファイバが損傷する可能性があります。使用中はファイバの曲げが生じないよう配慮し、曲げ損失を最小限に抑えてください。
また、用途に適したファイバを選ぶことも損傷防止に役立ちます。例えば、ラージモードエリアファイバは、標準的なシングルモードファイバをハイパワー光用として用いる場合の良い代替品となります。優れたビーム品質を有しながらMFDも大きいため、空気/ファイバ界面でのパワー密度は小さくなります。
ステップインデックスシングルモード石英ファイバは、一般にUV光やピークパワーの大きなパルス光には使用しませんが、これはその用途に伴う空間パワー密度が大きいためです。
Posted Comments: | |
Arivazhagan Arivu
 (posted 2023-02-02 16:15:10.467) Regarding photosensitive single mode fiber GF1, here its mentioned that "doped silica core". what is the material is doped here? jgreschler
 (posted 2023-02-02 04:03:50.0) Thank you for reaching out to Thorlabs. For GF1, the core is silica doped with both Germanium and Boron. For additional data or specifications please contact techsupport@thorlabs.com PETER LEE
 (posted 2022-11-23 14:18:24.473) what is dispersion at wavelength 1030 nm?
Is there dispersion curve(v.s wavelength) of this fiber?
any information of dispersion is helpful!thanks! jgreschler
 (posted 2022-11-23 11:08:13.0) Thank you for reaching out to Thorlabs. Additional data and specs can be requested by contacting techsupport@thorlabs.com. In this case we unfortunately don't have the data at 1030nm since that is outside the operating range of GF1. PETER LEE
 (posted 2022-11-23 14:17:24.98) what is dispersion at wavelength 1030 nm?
Is there dispersion curve(v.s wavelength) of this fiber?
any information of dispersion is helpful!thanks! jgreschler
 (posted 2022-11-23 11:08:14.0) Thank you for reaching out to Thorlabs. Additional data and specs can be requested by contacting techsupport@thorlabs.com. In this case we unfortunately don't have the data at 1030nm since that is outside the operating range of GF1B. aldergazly
 (posted 2013-12-27 01:47:59.9) we need fiber Bragg grating in the range 400-700nm pbui
 (posted 2014-01-02 04:05:47.0) Response from Phong at Thorlabs: Thank you for your interest. We offer a variety of fibers that are specifically designed for use in writing fiber Bragg gratings, but we do not yet carry one with a 400-700 nm design wavelength in our catalog. We will contact you directly to discuss your requirements and to see if we can offer a suitable fiber solution. vtgopakumar111
 (posted 2013-02-16 03:58:19.787) Sir/Madam
What is the Neff(Effective refractive index) of the fiber @ 1550nm or the entire C band
Thanks
VT Gopakumar cdaly
 (posted 2013-02-20 19:59:00.0) Response from Chris at Thorlabs: Thank you for your feedback. The effective index of the GF1 fiber is 1.469 at 1310 nm and 1.470 at 1550 nm. jlow
 (posted 2012-11-08 14:07:00.0) Response from Jeremy at Thorlabs: We do not have data for the attenuation for the GF1. As an estimate, it would be on the order of tens of dB/km at 1550nm. The attenuation is relatively large because of the heavy doping but the typical length used is a few meters so the attenuation is not a big concern. soonlink
 (posted 2012-11-01 05:58:36.187) Could you give me the data of the attenuation @1550 nm ( dB/Km ) for this kind of photosensitive fiber ? |
- 感光性が向上
- 通信用ファイバでは低い接続損失
この汎用感光性ファイバは、UV光に対して非常に高感度で、SMF-28eとモード整合しています。このため、通信業界で標準のファイバで使われるファイバーブラッググレーティング(FBG)作製の露光時間を短縮し、また業界標準のファイバと簡単に接続することができます。
当社では、この光ファイバから被覆を取り除くための被覆除去用工具にT06S13のご使用をお勧めしています。
Item # | Operating Wavelength | MFD @ 1310 nm | MFD @ 1550 nm | Cladding | Coating | Cut-Off Wavelength | NA | Core Index | Cladding Index | Proof Test |
---|---|---|---|---|---|---|---|---|---|---|
GF1 | 1500 - 1600 nm | 9.3 ± 0.5 µm | 10.5 ± 1.0 µm | 125 ± 1.5 µm | 250 ± 20 µm | 1260 ± 75 nm | 0.13 | Calla | Calla | ≥100 kpsi |
GF3 | 1500 - 1600 nm | - | 7.5 ± 0.5 µm | 125 ± 1.0 µm | 245 ± 15 µm | 1350 ± 50 nm | 0.16 | Calla | Calla | ≥100 kpsi |
- 低いバックグラウンド損失
- SMF-28eと接続可能
- UV光に対し高い感光性
この低損失感光性ファイバは、標準の通信用ファイバと比較して、UV光に対して非常に高い感光性を有しています。 このファイバは、SMF-28e接続用に特別に設計されて、 WDMの用途でお使いいただけます。 損失が低減されているので、長尺のファイバを使用することができ、製造された光ファイバ部品への損失挿入も低く抑えることができます。
当社では、この光ファイバから被覆を取り除くための被覆除去用工具にT06S13のご使用をお勧めしています。
Item # | Operating Wavelength | MFD @ 1550 nm | Cladding | Coating | Cut-Off Wavelength | NA | Core Index | Cladding Index | Proof Test |
---|---|---|---|---|---|---|---|---|---|
GF1B | 1500 - 1600 nm | 10.4 ± 0.8 µm | 125 ± 1.0 µm | 245 ± 15 µm | 1260 ± 100 nm | 0.13 | Calla | Calla | ≥100 kpsi |
- 高い感光性
- 高クラッドモードオフセット:9 nm(典型値)
- 厳密な公差
このクラッドモードオフセット感光性ファイバは、クラッドモードオフセットを改善する目的で特別に設計された製品です。クラッドモードオフセット動作は、隣接する2つ以上の回折格子に書き込みするためにファイバ性能を向上させます(9 nmオフセットは典型値)。このファイバは、業界標準のファイバと簡単に接続することができます。
当社では、この光ファイバから被覆を取り除くための被覆除去用工具にT06S13のご使用をお勧めしています。
Item # | Operating Wavelength | MFD @ 1550 nm | Cladding | Coating | Cut-Off Wavelength | NA | Core Index | Cladding Index | Proof Test |
---|---|---|---|---|---|---|---|---|---|
GF4A | 1500 - 1600 nm | 4.0 ± 0.3 µm | 125 ± 1.5 µm | 250 ± 20 µm | 1350 ± 100 nm | 0.30 | Calla | Calla | ≥100 kpsi |
- 高い感光性
- 通信用ファイバと低い接続損失
- 低コスト、高歩留りでの回折格子の製造
感光性ファイバPS1060は、UV光に対して高い感光性を有する設計になっています。 このファイバは、980~1060 nmの波長帯の励起用半導体レーザの発振波長安定化用ファイバーブラッググレーティング(FBG)への書き込み用に特別に設計されました。PS1060は、カプラの用途でも使用できます。
当社では、この光ファイバから被覆を取り除くための被覆除去用工具にT06S13のご使用をお勧めしています。
Item # | Operating Wavelength | MFD @ 1060 nm | Cladding | Coating | Cut-Off Wavelength | NA | Core Index | Cladding Index | Proof Test |
---|---|---|---|---|---|---|---|---|---|
PS1060 | 980 - 1060 nm | 6.2 ± 0.8 µm | 125 ± 1.5 µm | 245 ± 15 µm | 920 ± 50 nm | 0.13 | Calla | Calla | ≥100 kpsi |
- 低損失
- 感光性を強化した偏波保持ファイバ
- ロット間の均一性が高い
PS-PM980は980 nmの励起用半導体レーザ、カプラやマルチプレクサ用に設計された製品で、感光性が向上することによって、優れた偏波保持の特性と共に書き込み時間を大幅に短縮できます。
当社では、この光ファイバから被覆を取り除くための被覆除去用工具にT06S13のご使用をお勧めしています。
Item # | Operating Wavelength | MFD @ 980 nm | Cladding | Coating | Cut-Off Wavelength | NA | Core Index | Cladding Index | Proof Test |
---|---|---|---|---|---|---|---|---|---|
PS-PM980 | 970 - 1550 nm | 6.6 ± 1.0 µm | 125 ± 1.0 µm | 245 ± 15 µm | 900 ± 70 nm | 0.12 | Calla | Calla | ≥100 kpsi |