2分岐ファイバーバンドル、ファイバー2本
- High-OH (UV to NIR), Low-OH (Visible to IR), or ZBLAN (UV to MIR) Fiber
- Seven Fiber Core Sizes from Ø50 µm to Ø1000 µm
- Custom Fiber Bundles Also Available
BFY105HS02
Ø105 µm Core Fiber,
High OH
SMA905 Connector
SMA905 Connector
Common Connector Face
BFY400 Shown: Two 400 µm Core Fibers
Breakout
Junction
SMA905 Connector
SMA905 Connectors
FC/PC Connectors (Select Bundles)
Please Wait
Click to Enlarge
2分岐ファイバーバンドルの概略図(原寸大ではありません)
Click to Enlarge
各端に付いているステンレス製のスリーブにはファイバの情報が刻印されています。写真のSMA905コネクタ付きファイバーバンドルは高OHと低OHファイバの混合で構成されます。2本の高OH、2本の低OH、または2本のZBLANファイバーバンドル構成もご用意しております。
特長
- Y分岐ケーブルのファイバ構成は以下の4種類
- 高OH(UV域強化型)
- 低OH(赤外域強化型)
- 混合型(低OHと高OH)
- ZBLAN† UV~中赤外域)
- 終端はすべてSMA905またはFC/PCコネクタ(2.0 mmナローキー)付き
- コアサイズはØ50 µm~Ø1000 µmの7種類
- 各コネクタ用ダストキャップが付属
- カスタム仕様のケーブルもご提供可能
当社のファンアウトまたはY分岐ケーブルとも呼ばれる2分岐ファイバーバンドルは、耐久性の高いステンレス製チューブに納められた2本の高品質ファイバで構成されています。こちらのバンドルはØ50 µm~Ø1000 µmの7種類のコアサイズでご用意しております。下の表のように、これらのバンドルは2本の高OH、2本の低OH、高OHと低OH、または2本のZBLAN†(フッ化ジルコニウム)ファイバの構成でご用意しています。ZBLANファイバーバンドルはUV域から中赤外域(285 nm~4.5 µm)において極めて広い透過率を示すため、特に分光用途に適しています。
3本のケーブル終端にはSMA905コネクタまたはFC/PCコネクタが付いております。SMAコネクタは各種ファイバとファイバ径にご用意しており、FC/PCコネクタはコア径200 µmまたは400 µmの高OHファイバ用にご用意しております。分岐側のコネクタのステンレス製スリーブにはファイバの種類が刻印されています。分岐しない側のコネクタのスリーブにはファイバのコアサイズと開口数(NA)が刻印されています。
各バンドルは2本のシングルファイバから成っており、分岐点でそれぞれ1本ずつに分かれます。ファイバの非分岐端から分岐端までの長さは、高OHおよび/または低OHファイバでは2 m、ZBLANファイバでは0.5 mとなっています。寸法の一覧については下の表をご参照ください。2本のファイバは、分岐の長さを調整できるようスライド式のクランプによってねじ止めされています。クランプは2 mmの六角穴付き止めネジ(セットスクリュ)を締め付けることにより固定することができます。各バンドルには2 mm六角レンチが付属します。
分岐していない側の端を入射に使用する場合、放射角度が大きいLEDや、当社の安定化光源のような白色光源など両方のファイバーコアに均等に照射できる光源を使用すると、ケーブルは最大の性能を発揮することができます。下の写真は非分岐側コネクタの端面幾何形状を示します。
各パッチケーブルには、コネクタの先端を埃や他の危険から守るファイバーキャップが3個付属しています。 SMA905コネクタ付きのバンドルには金属製ダストキャップCAPSMが付属します。ゴム製ファイバーキャップCAPMのご購入も可能です。FC/PCコネクタ付きのバンドルにはプラスチック製のダストキャップCAPFが付属します。
分岐なし、または2分岐以上のカスタム仕様のファイバーバンドルも別途ご注文が可能です。当社のカスタム仕様のバンドルの性能の概要については「カスタムバンドル」をご覧ください。詳細は当社までお問い合わせください。
† ZBLANはフッ化ジルコニウム(ZrF4)ガラスの呼称として使用しています。
Click for Details
コア径Ø50 µmのY分岐バンドルの非分岐端。コア、クラッド、そしてエポキシ接着剤の詳細がご覧いただけます。
Click for Details
コア径Ø105 µmのY分岐バンドルの非分岐端。コア、クラッド、そしてエポキシ接着剤の詳細がご覧いただけます。
Bundles Selection Guide | |||||||||
---|---|---|---|---|---|---|---|---|---|
Straight | Bifurcated | Fan-Out | |||||||
Round | Linear to Linear | Round to Linear | Standard 2-Fiber Y-Bundle Optogenetics 2-Fiber Y-Bundle | 19-Fiber Y-Bundle | Reflection Probes | Reflection Probes with Reference Leg | Transmission Dip Probes | 1-to-4 | Standard 1-to-7 Optogenetics 1-to-7 |
All Fiber Patch Cables |
Click to Enlarge
カスタム仕様の1対4のファンアウトケーブル
カスタムファイバーバンドル
当社では、カスタム仕様の分岐なし、またはファンアウトファイバーバンドルをランダムまたはマッピング配列でご提供しております。 下の表は、当社が現在生産するバンドルの性能です。表に記載されていない性能のバンドルをご希望の場合は、当社へお問い合わせください。
当社の通常の生産工程以上の技術を必要とする仕様をご希望の場合は、ご提供できないこともございますのでご了承ください。お客様のご用途に応じた製造が可能 かどうかについては、お気軽にご相談ください。カスタムバンドルのお見積りをご希望の場合には、ご希望のバンドルの配列を絵や図面でお送りください。
Click to Enlarge
カスタム仕様フッ化物ファイバーバンドル、SMA905コネクタ付き
Custom Bundle Capabilities | |||
---|---|---|---|
Bundle Configuration | Straighta | Fan Out (2 or More Legs)a,b | |
Fiber Types | Single Mode | Standard (320 to 2100 nm), Ultra-High NA (960 to 1600 nm), Photosensitive (980 to 1600 nm) | |
Multimode | 0.10 NA Step Index (280 to 750 nm), 0.22 NA Step Index (190 to 2500 nm), 0.39 NA Step Index (300 to 2200 nm), Multimode Graded Index (750 to 1450 nm), Multimode ZrF4 (285 nm to 4.5 µm) | ||
Tubing Optionsc | Thorlabs' Stock Furcation Tubing, Stainless Steel Tubing or Black Heat Shrink Tubing | ||
Connectors | SMA905 (Ø2 mm Max Cored), FC/PC (Ø800 µm Max Cored), Ø1/4" Probe, or Flat-Cleaved Unterminated Fiber | ||
Length Tolerancee | ±0.14 m | ||
Active Area Geometryf | Round or Linear | ||
Angle Polishing | On Special Request. Available for up to Ø105 µm Core on Single Fiber End. Please Inquire for More Information. |
標準品以外のカスタム仕様のバンドルをご希望の場合は、当社までお問い合わせください。
このページの情報は当社の高OH、低OH、ならびに混合型ファーバーバンドルに関するもので、ZrF4ファイバーバンドル用のガイダンスではありません。
Quick Links |
---|
Damage at the Air / Glass Interface |
Intrinsic Damage Threshold |
Preparation and Handling of Optical Fibers |
レーザによる石英ファイバの損傷
このチュートリアルではコネクタ無し(素線)ファイバ、コネクタ付きファイバ、およびレーザ光源に接続するその他のファイバ部品に関連する損傷メカニズムを詳しく説明しています。そのメカニズムには、空気/ガラス界面(自由空間結合時、またはコネクタ使用時)ならびにファイバ内における損傷が含まれます。ファイバ素線、パッチケーブル、または溶融型カプラなどのファイバ部品の場合、損傷につながる複数の可能性(例:コネクタ、ファイバ端面、機器そのもの)があります。ファイバが対処できる最大パワーは、常にそれらの損傷メカニズムの中の最小の限界値以下に制限されます。
損傷閾値はスケーリング則や一般的なルールを用いて推定することはできますが、ファイバの損傷閾値の絶対値は利用方法やユーザ定義に大きく依存します。このガイドは、損傷リスクを最小に抑える安全なパワーレベルを推定するためにご利用いただくことができます。適切な準備と取扱い方法に関するガイドラインにすべて従えば、ファイバ部品は規定された最大パワーレベルで使うことができます。最大パワーの値が規定されていない場合は、部品を安全に使用するために下表の「実用的な安全レベル」の範囲に留めてご使用ください。 パワー処理能力を低下させ、ファイバ部品に損傷を与える可能性がある要因は、ファイバ結合時のミスアライメント、ファイバ端面の汚れ、あるいはファイバそのものの欠陥などですが、これらに限られるわけではありません。特定の用途におけるファイバのパワー処理能力に関するお問い合わせは当社までご連絡ください。
Click to Enlarge
損傷のないファイバ端
Click to Enlarge
損傷のあるファイバ端
空気/ガラス界面における損傷
空気/ガラス界面ではいくつかの損傷メカニズムが存在する可能性があります。自由空間結合の時、またはコネクタで2本のファイバを結合した時、光はこの界面に入射します。高強度の光は端面を損傷し、ファイバのパワー処理能力の低下や恒久的な損傷につながる場合があります。コネクタ付きのファイバで、コネクタがエポキシ接着剤でファイバに固定されている場合、高強度の光によって発生した熱により接着剤が焼けて、ファイバ端面に残留物が残る可能性があります。
Estimated Optical Power Densities on Air / Glass Interfacea | ||
---|---|---|
Type | Theoretical Damage Thresholdb | Practical Safe Levelc |
CW (Average Power) | ~1 MW/cm2 | ~250 kW/cm2 |
10 ns Pulsed (Peak Power) | ~5 GW/cm2 | ~1 GW/cm2 |
ファイバ素線端面での損傷メカニズム
ファイバ端面での損傷メカニズムはバルクの光学素子の場合と同様なモデル化ができ、UV溶融石英(UVFS)基板の標準的な損傷閾値を石英ファイバに当てはめることができます。しかしバルクの光学素子とは異なり、光ファイバの空気/ガラス界面においてこの問題に関係する表面積やビーム径は非常に小さく、特にシングルモードファイバの場合はそれが顕著です。 パワー密度が与えられたとき、ファイバに入射するパワーは、小さいビーム径に対しては小さくする必要があります。
右の表では光パワー密度に対する2つの閾値が記載されています。理論的な損傷閾値と「実用的な安全レベル」です。一般に、理論的損傷閾値は、ファイバ端面の状態も結合状態も非常に良いという条件で、損傷のリスク無しにファイバの端面に入射できる最大パワー密度の推定値を表しています。「実用的な安全レベル」のパワー密度は、ファイバ損傷のリスクが極めて小さくなる値を示しています。ファイバまたはファイバ部品をこの実用的な安全レベルを超えて使用することは可能ですが、その時は取扱い上の注意事項を適切に守り、使用前にローパワーで性能をテストする必要があります。
シングルモードの実効面積の計算
シングルモードファイバの実効面積は、モードフィールド径(MFD)、すなわちファイバ内の光が伝搬する部分の断面積によって定義されます。この面積にはファイバのコアとクラッドの一部が含まれます。シングルモードファイバとの結合効率を良くするためには、入射ビーム径をファイバのモードフィールド径に合致させなければなりません。
例として、シングルモードファイバSM400を400 nmで使用した時のモードフィールド径(MFD)は約Ø3 µmで、SMF-28 Ultraを1550 nmで使用したときのモードフィールド径(MFD)はØ10.5 µmです。これらのファイバの実効面積は下記の通り計算します。
SM400 Fiber: Area = Pi x (MFD/2)2 = Pi x (1.5 µm)2 = 7.07 µm2 = 7.07 x 10-8 cm2
SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 µm)2 = 86.6 µm2 = 8.66 x 10-7 cm2
ファイバ端面が対応できるパワーを推定するには、パワー密度に実効面積を乗じます。なおこの計算は均一な強度プロファイルを想定しています。しかしほとんどのレーザービームでは、シングルモード内でガウス分布を示すため、ビームの端よりも中央のパワー密度が高くなります。よって、これらの計算は損傷閾値または実用的安全レベルに対応するパワーとは若干異なることを考慮する必要があります。連続光源を想定して上記のパワー密度の推定値を使用すると、それぞれのパワーは下記のように求められます。
SM400 Fiber: 7.07 x 10-8 cm2 x 1 MW/cm2 = 7.1 x 10-8 MW = 71 mW (理論的損傷閾値)
7.07 x 10-8 cm2 x 250 kW/cm2 = 1.8 x 10-5 kW = 18 mW (実用的な安全レベル)
SMF-28 Ultra Fiber: 8.66 x 10-7 cm2 x 1 MW/cm2 = 8.7 x 10-7 MW = 870 mW (理論的損傷閾値)
8.66 x 10-7 cm2 x 250 kW/cm2 = 2.1 x 10-4 kW = 210 mW (実用的な安全レベル)
マルチモードの実効面積
マルチモードファイバの実効面積は、そのコア径によって定義されますが、一般にシングルモードファイバのMFDよりもはるかに大きくなります。当社では最適な結合を得るためにコア径のおよそ70~80%にビームを集光することをお勧めしています。マルチモードファイバでは実効面積が大きくなるほどファイバ端面でのパワー密度は下がるので、より大きな光パワー(通常キロワットオーダ)を入射しても損傷は生じません。
フェルール・コネクタ付きファイバに関する損傷メカニズム
コネクタ付きシングルモード石英ファイバに入力可能なパワー処理限界値(概算)を示したグラフ。各線はそれぞれの損傷メカニズムに応じたパワーレベルの推定値を示しています。 入力可能な最大パワーは、損傷メカニズムごとに制限されるパワーのうちの一番小さな値(実線で表示)によって制限されます。
コネクタ付きファイバのパワー処理能力に関しては、ほかにも考慮すべき点があります。ファイバは通常、エポキシ接着剤でセラミック製またはスチール製のフェルールに取り付けられています。光がコネクタを通してファイバに結合されると、コアに入射せずにファイバを伝搬する光は散乱されてファイバの外層からフェルール内へ、さらにフェルール内でファイバを保持する接着剤へと伝搬します。光の強度が大きいとエポキシ接着剤が焼け、それが蒸発して残留物がコネクタ端面に付着します。これによりファイバ端面に局所的に光を吸収する部分ができ、それに伴って結合効率が減少して散乱が増加するため、さらなる損傷の原因となります。
エポキシ接着剤に関連する損傷は、いくつかの理由により波長に依存します。一般に、光の散乱は長波長よりも短波長で大きくなります。短波長用のMFDの小さなシングルモードファイバへの結合時には、ミスアライメントに伴ってより多くの散乱光が発生する可能性があります。
エポキシ樹脂が焼損するリスクを最小に抑えるために、ファイバ端面付近のファイバとフェルール間にエポキシ接着剤の無いエアギャップを有するファイバーコネクタを構築することができます。当社の高出力用マルチモードファイバーパッチケーブルでは、このような設計のコネクタを使用しております。
複数の損傷メカニズムがあるときのパワー処理限界値を求める方法
ファイバーケーブルまたはファイバ部品において複数の損傷要因がある場合(例:ファイバーパッチケーブル)、入力可能なパワーの最大値は必ずファイバ部品構成要素ごとの損傷閾値の中の一番小さな値により決まります。この値が一般的にはパッチケーブルの端面に入射可能な最大のパワーを表します(出力パワーではありません)。
右のグラフは、シングルモードパッチケーブルにおけるファイバ端面での損傷とコネクタでの損傷に伴うパワー処理限界の推定値を例示しています。 ある波長におけるコネクタ付きファイバの総合的なパワー処理限界値は、その波長に対する2つの制限値の小さい方の値(実線)によって制限されます。488 nm付近で使用しているシングルモードファイバは主にファイバ端面の損傷(青い実線)によって制限されますが、1550 nmで使用しているファイバはコネクタの損傷(赤い実線)によって制限されます。
マルチモードファイバの実効面積はコア径で定義され、シングルモードファイバの実効面積より大きくなります。その結果、ファイバ端面のパワー密度が小さくなり、大きな光パワー(通常キロワットオーダ)を入射してもファイバに損傷は生じません(グラフには表示されていません)。しかし、フェルール・コネクタの損傷による限界値は変わらないため、マルチモードファイバが処理できる最大パワーはフェルールとコネクタによって制限されることになります。
上記の値は、取り扱いやアライメントが適切で、それらによる損傷が生じない場合のパワーレベルです。また、ファイバはここに記載されているパワーレベルを超えて使用されることもあります。しかし、そのような使い方をする場合は一般に専門的な知識が必要で、まずローパワーでテストして損傷のリスクを最小限に抑える必要があります。その場合においても、ハイパワーで使用するファイバ部品は消耗品と捉えた方が良いでしょう。
ファイバ内の損傷閾値
空気/ガラス界面で発生する損傷に加え、ファイバのパワー処理能力はファイバ内で発生する損傷メカニズムによっても制限されます。この制限はファイバ自体が本質的に有するもので、すべてのファイバ部品に適用されます。ファイバ内の損傷は、曲げ損失による損傷とフォトダークニングによる損傷の2つに分類されます。
曲げ損失
ファイバが鋭く曲げられると、コア内を伝搬する光がコア/クラッド界面において反射する際に、その反射角が全反射臨界角よりも大きくなります。曲げ損失は、このように内部全反射ができなくなることにより生じる損失です。このような状況下では、光はファイバから局所的に漏れだします。漏れる光のパワー密度は一般に大きく、ファイバのコーティングや補強チューブが焼損する可能性があります。
特殊ファイバに分類されるダブルクラッドファイバは、コアに加えてファイバのクラッド(2層目)も導波路として機能するため、曲げ損失による損傷のリスクが抑えられます。クラッドと被覆の界面の臨界角をコアとクラッドの界面の臨界角より大きくすることで、コアから漏れた光はクラッド内に緩く閉じ込められます。その後、光はセンチメートルからメートルオーダーの距離に渡って漏れ出しますが、局所的ではないため損傷リスクは最小に留められます。当社ではメガワットレベルの大きなパワーにも対応するNA 0.22のダブルクラッドマルチモードファイバを製造、販売しております。
フォトダークニング
もう1つのファイバ内の損傷メカニズムとして、特にコアにゲルマニウムが添加されたファイバをUVや短波長の可視光で使用した時に起こるフォトダークニングまたはソラリゼーションがあります。これらの波長で使用されたファイバは時間の経過とともに減衰量が増加します。 フォトダークニングが発生するメカニズムはほとんど分かっていませんが、その現象を緩和するファイバはいくつか開発されています。例えば、水酸イオン(OH)が非常に低いファイバはフォトダークニングに耐性があることが分かっています。またフッ化物などのほかの添加物もフォトダークニングを低減させる効果があります。
しかし、上記の対応をとったとしても、UV光や短波長に使用したファイバはいずれフォトダークニングが生じます。よってこれらの波長で使用するファイバは消耗品としてお考えください。
光ファイバの準備ならびに取扱い方法
一般的なクリーニングならびに操作ガイドライン
この一般的なクリーニングならびに操作ガイドラインはすべてのファイバ製品向けにお勧めしております。さらに付属資料やマニュアルに記載された個々の製品に特化したガイドラインも遵守してください。損傷閾値の計算は、すべてのクリーニングおよび取扱い手順に適切に従ったときにのみ適用することができます。
(コネクタ付き、またはファイバ素線に関わらず)ファイバを設置または組み込む前に、すべての光源はOFFにしてください。これにより、損傷の可能性のあるコネクタまたはファイバの脆弱な部分に集光されたビームが入射しないようにすることができます。
ファイバやコネクタ端面の品質がファイバのパワー処理能力に直結します。ファイバを光学系に接続する前に必ずファイバ端を点検してください。端面はきれいで、入射光の散乱を招く汚れや汚染物質があってはなりません。ファイバ素線は使用前にクリーブし、クリーブの状態が良好であることを確認するためにファイバ端面の点検をしてください。
ファイバを光学系に融着接続する場合、ハイパワーで使用する前にまずローパワーで融着接続の状態が良いことを確認してください。融着接続の品質が良くないと接続面での散乱が増え、ファイバ損傷の原因となる場合があります。
システムのアライメントや光結合の最適化などの作業はローパワーで行ってください。これによりファイバの(コア以外の)他の部分の露光が最小に抑えられます。ハイパワーのビームがクラッド、被覆またはコネクタに集光された場合、散乱光による損傷が発生する可能性があります。
ハイパワーでファイバを使用するための要点
光ファイバやファイバ部品は一般には安全なパワー限界値内で使用する必要がありますが、アライメントや端面のクリーニングがとても良い理想的な条件下では、ファイバ部品のパワー限界値を上げることができる場合があります。入力または出力パワーを増加させる前に、システム内のファイバ部品の性能と安定性を確認し、またすべての安全ならびに操作に関する指示に従わなければなりません。下記はファイバ内またはファイバ部品内の光パワーをの増大させること加を検討していするときに役立つご提案です。
ファイバースプライサを使用してファイバ部品をシステムに融着接続すると、空気/ファイバ界面での損傷の可能性を最小化できます。品質の高い融着接続が実現されるよう、すべて適切なガイドラインに則って実施する必要があります。融着接続の状態が悪いと、散乱や融着接続面での局所的な加熱などが発生し、ファイバを損傷する可能性があります。
ファイバまたはファイバ部品の接続後、ローパワーでシステムのテストやアライメントを実施してください。システムパワーを必要な出力パワーまで徐々に上昇させ、その間、定期的にすべての部品が適切にアライメントされ、結合効率が入力パワーによって変動していないことを確認します。
ファイバを鋭く曲げると曲げ損失が発生し、ファイバのストレスを受けた部分から光が漏れる可能性があります。ハイパワーで使用している時は、大量の光が小さな局所領域(歪みのある領域)から流出すると局所的に加熱され、ファイバが損傷する可能性があります。使用中はファイバの曲げが生じないよう配慮し、曲げ損失を最小限に抑えてください。
また、用途に適したファイバを選ぶことも損傷防止に役立ちます。例えば、ラージモードエリアファイバは、標準的なシングルモードファイバをハイパワー光用として用いる場合の良い代替品となります。優れたビーム品質を有しながらMFDも大きいため、空気/ファイバ界面でのパワー密度は小さくなります。
ステップインデックスシングルモード石英ファイバは、一般にUV光やピークパワーの大きなパルス光には使用しませんが、これはその用途に伴う空間パワー密度が大きいためです。
Posted Comments: | |
user
 (posted 2023-08-09 16:07:40.21) 关于光纤束的耦合效率 cdolbashian
 (posted 2023-08-16 09:21:58.0) Thank you for reaching out to us with this inquiry. A member of our tech support team, local to you, has reached out to you directly to address your coupling inquiries. maudolci
 (posted 2017-01-27 16:40:00.847) Dear Customer Support Service,
is it possible to manufacture a bifurcated single-mode fiber by assembling LMA-10 (transmission from 400 to 1700 nm) and SM2000 (transmission from 1.7 to 2.3 micron), in order to have a system with two output single-mode fibers providing light over the full 400-2300 nm range ?
Thanks in advance for your reply.
Dr. Mauro Dolci
Italian National Institute for Astrophysics pbui
 (posted 2017-01-30 04:31:49.0) Thank you for your inquiry. Currently, we are unable to provide bifurcated patch cables that include PCF fibers. However, we are constantly working on adding new capabilities and services and hope to offer PCF termination services in the future. We will follow up with you to discuss your cable requirements and provide an alternative solution if possible. aroy
 (posted 2017-01-06 12:50:36.473) Would it be possible for you to re-terminate the bifurcated ends to FC connector? tfrisch
 (posted 2017-01-06 01:23:18.0) Hello, thank you for contacting Thorlabs. We should be able to reterminate, though each fiber would be shorter since we must cut off the old connector. I will put you in touch with our Tech Support Team. |
- 波長範囲250~1200 nmまたは300~1200 nm (下の表をご覧ください)
- 終端はすべてSMA905またはFC/PC(2.0 mmナローキー)コネクタ付き
- 非分岐端~分岐端の全長は2 m
- 高品質で頑丈な黒色プラスチック製シース付きØ6.1 mmステンレス製ジャケットFT061PSで保護
Item # | Wavelength Range | Fiber Item # | # of Fibers | Core Diameter | Cladding Diameter | Coating Diameter | NAb | Min Bend Radius (Short Term / Long Term) | Common End Face Drawing | Connector Material |
---|---|---|---|---|---|---|---|---|---|---|
FC/PC Connectors with 2.0 mm Narrow Key | ||||||||||
BFY200HF2 | 300 - 1200 nm | FT200UMT | 2 | 200 ± 5 µm | 225 ± 5 µm | 500 ± 30 µm | 0.39 | 21c / 42 mmc | FC/PC Ceramic | |
BFY400HF2 | 300 - 1200 nm | FT400UMT | 2 | 400 ± 8 µm | 425 ± 10 µm | 730 ± 30 µm | 0.39 | 43c / 86 mmc | FC/PC Mixedd | |
SMA Connectors | ||||||||||
BFY50HS02 | FG050UGA | 2 | 50 ± 1 µm | 125 +1/-2 µm | 250 ± 10 µm | 0.22 ± 0.02 | SMA905 Stainless Steel | |||
BFY105HS02 | 250 - 1200 nma | FG105UCA | 2 | 105 +1/-3 µm | 125 +1/-2 µm | 250 ± 10 µm | 0.22 ± 0.02 | 19e / 32 mmc | ||
BFY200HS02 | 300 - 1200 nm | FT200UMT | 2 | 200 ± 5 µm | 225 ± 5 µm | 500 ± 30 µm | 0.39 | 21c / 42 mmc | ||
BFY400HS02 | 300 - 1200 nm | FT400UMT | 2 | 400 ± 8 µm | 425 ± 10 µm | 730 ± 30 µm | 0.39 | 43c / 86 mmc | ||
BFY600HS02 | 300 - 1200 nm | FT600UMT | 2 | 600 ± 10 µm | 630 ± 10 µm | 1040 ± 30 µm | 0.39 | 48c / 96 mmc | ||
BFY1000HS02 | 300 - 1200 nm | FT1000UMT | 2f | 1000 ± 15 µm | 1035 ± 15 µm | 1400 ± 50 µm | 0.39 | 69c / 138 mmc | f |
- 波長範囲400~2200 nmまたは400~2400 nm(下の表をご覧ください)
- 終端はすべてSMA905コネクタ付き
- 非分岐端~分岐端の全長は2 m
- 高品質で頑丈な黒色プラスチック製コーティング付きØ6.1 mmステンレス製ジャケットFT061PSで保護
Item # | Wavelength Range | Fiber Item # | # of Fibers | Core Diameter | Cladding Diameter | Coating Diameter | NAa | Min Bend Radius (Short Term / Long Term) | Common End Face Drawing | Connector Material |
---|---|---|---|---|---|---|---|---|---|---|
SMA Connectors | ||||||||||
BFY50LS02 | FG050LGA | 2 | 50 ± 1 µm | 125 +1/-2 µm | 250 ± 10 µm | 0.22 ± 0.02 | SMA905 Stainless Steel | |||
BFY105LS02 | 400 - 2400 nm | FG105LCA | 2 | 105 +1/-3 µm | 125 +1/-2 µm | 250 ± 10 µm | 0.22 ± 0.02 | 19b / 32 mmc | ||
BFY200LS02 | 400 - 2200 nm | FT200EMT | 2 | 200 ± 5 µm | 225 ± 5 µm | 500 ± 30 µm | 0.39 | 21c / 42 mmc | ||
BFY400LS02 | 400 - 2200 nm | FT400EMT | 2 | 400 ± 8 µm | 425 ± 10 µm | 730 ± 30 µm | 0.39 | 43c / 86 mmc | ||
BFY600LS02 | 400 - 2200 nm | FT600EMT | 2 | 600 ± 10 µm | 630 ± 10 µm | 1040 ± 30 µm | 0.39 | 48c / 96 mmc | ||
BFY1000LS02 | 400 - 2200 nm | FT1000EMT | 2d | 1000 ± 15 µm | 1035 ± 15 µm | 1400 ± 50 µm | 0.39 | d |
- 高OH:300~1200 nm、低OH:400~2200 nm
- 終端はすべてSMA905コネクタ付き
- 非分岐端~分岐端の全長は2 m
- 高品質で頑丈な黒色プラスチック製コーティング付きØ6.1 mmステンレス製ジャケットFT061PSで保護
Item # | Wavelength Range | Fiber Item # | # of Fibers | Core Diameter | Cladding Diameter | Coating Diameter | NAa | (Short Term / Long Term) | Common Drawing | Connector Material |
---|---|---|---|---|---|---|---|---|---|---|
SMA Connectors | ||||||||||
BFY200MS02 | FT200UMT | 1 | 225 ± 5 µm | 0.39 | 21b / 42 mmb | SMA905 Stainless Steel | ||||
400 - 2200 nm | FT200EMT | 1 | ||||||||
BFY400MS02 | FT400UMT | 1 | 400 ± 8 µm | 425 ± 10 µm | 730 ± 30 µm | 0.39 | 43b / 86 mmb | |||
400 - 2200 nm | FT400EMT | 1 |
Click for Details
ZBLANファイバーバンドルには型番、主な仕様、バッチ番号が記載されています。
- 自社製造のZBLAN(ZrF4)ファイバ製2分岐ファイバーバンドル
- 285~4.5 µmの広帯域な波長範囲
- 全ての終端はSMA905コネクタ付き
- 非分岐端~分岐端の全長は0.5 m
- BFYZ4S05: 高品質Ø3.8 mmステンレス製チューブ
- BFYZ4S05: 高品質Ø8.0 mmステンレス製チューブ
Item # | Wavelength Range | Fiber Item # | # of Fibers | Core Diameter | Cladding Diameter | Coating Diameter | NAa | Min Bend Radius (Short Term / Long Term) | Common End Face Drawing | Connector Material |
---|---|---|---|---|---|---|---|---|---|---|
SMA Connectors | ||||||||||
BFYZ4S05 | 285 nm - 4.5 µm | FZM45020 | 2 | 450 ± 15 µm | 540 ± 15 µm | 650 ± 25 µm | 0.20 ± 0.02 @ 2.0 µm | 50b / 125 mmc | SMA905 Stainless Steel | |
BFYZ6S05 | FZM60020 | 600 ± 20 µm | 690 ± 20 µm | 800 ± 40 µm | 140b / 160 mmc |
Click for Details
真空対応のワイドキー付きFC/PCアダプタ
Click for Details
アダプタSM1SMAを用いてマルチモードファイバーバンドルを接続したOSL2
- 当社のファイバ光源にファイバーバンドルを接続
- SM1SMA、SM1FC2、およびSM1FCは光源OSL2およびOSL2IRに対応
- SM1SMAはSMAコネクタ付きバンドル用
- SM1FC2とSM1FCはFC/PCコネクタ付きバンドル用
- SM1SMAとSM1FCは真空対応の製品もご用意
- OSL1-SMAは、SMAコネクタ付きバンドルを旧光源OSL1の出力部に接続可能
ファイバーコネクタ用アダプタSM1SMA、SM1FC2およびSM1FCを使用することにより、SMAやFC/PCコネクタ付きファイバーバンドルをファイバ出力光源OSL2またはOSL2IRの出力部に接続することができます。 アダプタSM1FC2にはナローキースロット(2.0 mm)、SM1FCにはワイドキースロット(2.2 mm)が付いています。ナローキーとワイドキーのコネクタの比較については光ファイバとはのページをご覧ください。アダプタSM1SMAVおよびSM1FCVは、10-10 Torrまでの真空に対応します。アダプタOSL1-SMAを用いると、SMAコネクタ付きファイバーバンドルを当社の旧光源OSL1の出力部に接続することができます。SMAまたはFC/PCコネクタ付きファイバーバンドルは、旧光源OSL1に付属するファイバーバンドルや現行のY分岐ファイバーバンドルOSL2YFBに比べて、動作波長範囲が広く、ファイバ長も長くなっています。
アダプタープレートSM1SMA、SM1SMAV、SM1FC2、SM1FC、SM1FCVは、光源OSL2およびOSL2IRのSM1ネジ付き出力ポートに取り付け可能です。SM1SMA、SM1FCV、SM1FC、またはSM1FCVを取り付ける際には、まずOSL2やOSL2IRに予め付いているファイバーバンドルアダプタのネジを緩めて出力ポートから取り外します。アダプタOSL1-SMAは、旧ユニットOSL1の前面パネルに挿入し、つまみネジで固定します。
注:OSL1-SMAは現行の光源OSL2またはOSL2IRには対応しません。