体積型ホログラフィック回折格子型(VHG)安定化単一周波数レーザー、TO-Can


  • 785 nm, 808 nm, 852 nm, or 976 nm VHG-Stabilized Laser Diodes
  • Wavelength-Stabilized Output Over Operating Temperature Range
  • Ø9 mm TO Can Package

LD785-SEV300

785 nm, 300 mW, Ø9 mm TO Can

This high-resolution optical spectrum was obtained using one of Thorlabs’ Optical Spectrum Analyzers (OSA201C), which provides 8 pm resolution at 785 nm.

Related Items


Please Wait
各種資料とシリアル番号付き製品のご案内
info icon仕様や図面等の情報は、仕様表内のInfo欄の青いアイコンから取得可能です。
info icon型番横の赤い資料アイコンでは、各種技術資料を提供しています。

Choose Item

型番の左横にChoose Itemと記載されている製品はシリアル番号をお選びください。ドロップダウンリストで表示される在庫製品から、中心波長などご希望の仕様に近い製品にチェックを入れてご依頼ください。シリアル番号横の赤いアイコンから、各製品ごとのL-I-Vやスペクトル測定値がダウンロード可能です。
Contact ThorlabsLaser Diode Tutorial

特長

  • 中心波長:785 nm、808 nm、852 nm、976 nm
  • 波長安定性の高いレーザ出力
  • Ø9 mm TO-Can型パッケージ

用途例

  • ラマン分光法
  • 顕微鏡

体積型ホログラフィック回折格子型(VHG)安定化レーザは、体積型ホログラフィック回折格子を利用して狭線幅、単一周波数動作を可能にした半導体レーザです。この方法によって10 MHzの線幅(典型値、型番LD785-SEV300、LD808-SEV500、LD852-SEV600の場合)と優れたサイドモード抑圧比(典型値40 dB以上、このページ内のすべてのVHG安定化レーザにおいて)を実現します。レーザの典型的な性能グラフをご覧になるには、下記表内の青いInfoアイコン(info icon)をクリックしてください。レーザが安定化する温度範囲については、各半導体レーザ個別のデータシートに記載されています。

これらのVHG安定化レーザは、ピンコードEの小型Ø9 mm TO Canパッケージに納められています。アイソレータを内蔵していないため、出力をコリメートする場合には近赤外域アイソレータのご使用をお勧めいたします。単一周波数の性能は、後方反射からのアイソレーションが35 dB以上のときのみ保証されます。当社では バタフライパッケージ付きのVHGレーザと、FC/APCコネクタ付きシングルモードファイバーピグテールパッケージの785 nmレーザ(LP785-SAV50)もご用意しております。

下記に記載されている半導体レーザの中心波長はあくまでも典型値です。実際の半導体レーザの中心波長は製造ロット毎に変わるので、ご購入いただいた半導体レーザの中心波長が典型値ではない場合もあります。下記の「Choose Item」をクリックすると、在庫品の中心波長、出力パワー、動作電流を含むリストが表示されます。シリアル番号横の赤いアイコンをクリックすると、シリアル番号毎のL-I-V特性やスペクトル測定値が記載されたPDFファイルをご覧いただけます。

半導体レーザは静電気により容易に破壊されます。ESDリストストラップをご利用になるなどして、製品の取扱い時には静電気に十分ご注意ください。

当社ではピグテール付き体積型ホログラフィック回折格子安定化ならびに分布帰還型(DFB)単一周波数レーザや、バタフライパッケージ付き外部共振型(ECL)分布ブラッグ反射型(DBR)単一周波数レーザをご用意しております。DFBレーザは、VHG安定化レーザと同等の線幅をもたらしながら単一周波数動作で数ナノメートルにわたりモードホップフリーのチューニングが可能です。DBR単一周波数レーザの線幅はVHG安定化レーザと同等ですが、中心波長が温度や電流によって可変できます。各レーザ種における相違点については「SFLガイド」タブで説明しています。

Video Insight(How-to動画): TO-Can型半導体レーザのセットアップ

TO-Can型半導体レーザをマウント内に取り付けて、温度と電流の制御下で動作するように設定する際、誤ってレーザに損傷を与えたり破損したりする可能性が多くあります。このガイドでは、人体と半導体レーザを損傷の危険から守る方法を順を追ってご説明しています。

 

仕様の範囲内でご使用いただく限り、半導体レーザの製品寿命は非常に長いものです。ほとんどの故障は、不適切に取り扱われた場合や最大定格値を超えて動作した場合に生じています。半導体レーザは非常に静電気に敏感なデバイスであるため、取り扱う際は適切な静電気防止製品を使用する必要があります。静電気に非常に敏感なため、半導体レーザはパッケージ開封後の返品を受け付けておりません。未開封の場合のみ全額返金いたします。

取扱いならびに保管に関する注意点

半導体レーザは、静電気放電(ESD)による損傷の可能性が非常に高いため、取扱い時は以下の点にご注意ください。

リストストラップ
半導体レーザを取り扱う際には、必ず接地用ESDリストストラップをご使用ください。

静電気防止マット
常に接地用ESDマットの上で作業してください。

半導体レーザの保管
使用していない時はレーザのリード端子を短絡させると静電気放電による損傷を防ぐことが出来ます。

使用上の安全遵守事項

適切なドライバの使用
半導体レーザを使用するときは、オーバードライブを防止するためにも駆動電流と電圧を精密に制御する必要があります。またレーザードライバは、電源ラインのサージ等の過渡的で急激な変化を吸収し、半導体レーザを守ります。用途に応じたレーザードライバをお選びください。汎用的な電流制限抵抗器付きの定電圧電源(直流電源)は、半導体レーザを防御するのに十分な制御機能が備わっていないのでご使用にならないでください。

パワーメータ
半導体レーザと電流電源(ドライバ)を組み合わせた系のレーザ出力を較正する際には、NISTトレーサブルなパワーメータを使用してレーザの出力を正確に計測してください。通常、半導体レーザを光学系に組み込む前に、レーザの出力を直接計測するのがもっとも安全です。これができない場合には、レーザ直後の出力を推定する際、必ず光損失(伝送損失や開口絞りなど)を考慮してください。

反射について
半導体レーザの前方にある光学系の中にレーザに対面するような平面があると、レーザーエネルギの一部分が反射され、レーザ内のモニタ用フォトダイオードに戻ってしまい、誤った高いフォトダイオード電流値が計測される場合があります。その状態でシステム内の光学部品が移動され、モニタ用フォトダイオードへのエネルギの後方反射がなくなった場合、光出力を一定に維持するフィードバックループがフォトダイオード電流の低下を感知します。その結果、レーザードライバの電流を上げる制御が自動的に行なわれ、半導体レーザのオーバードライブにつながる可能性があります。後方反射はその他にも故障や半導体レーザの損傷を招くことがあります。これを防ぐため、光学部品のすべての面を光軸に対して5~10°の角度で傾けるように配置してください。また必要に応じて光アイソレータを使用し、レーザへの直接的なフィードバックを減衰するようにしてください。

ヒートシンク
半導体レーザの寿命は動作温度に対して反比例します。半導体レーザは必ず適切なヒートシンクを取り付けてレーザーパッケージから余分な熱を除去してください。

電圧ならびに電流のオーバードライブについて
各半導体レーザの仕様書に記載されている最大電圧ならびに電流を一時的にでも超えないようご注意ください。また、逆方向電圧については3 Vでも半導体レーザを損傷する可能性があります。

静電気放電(ESD)に敏感なデバイス
半導体レーザは駆動時であってもESDによる損傷を受けやすいデバイスです。静電気放電によるダメージは、半導体レーザとドライバ間に使用するインターフェイスのケーブルを長くしている場合、インダクタンスによりさらに起こりやすくなります。半導体レーザならびに半導体レーザを取り付けた機器を静電気にさらさないよう常にご注意ください。

ON/OFF時ならびに電源ラインを共通にする他の機器に起因する過渡現象
半導体レーザは応答が高速なため、 1 µs未満の過渡電流でもダメージを受ける場合があります。はんだごて、真空ポンプ、蛍光ランプなどの高電流機器の使用時には過渡的に過大な負荷がかかる場合があります。そのため半導体レーザを駆動する際は必ずサージ防止付きコンセントをご使用ください。

半導体レーザについてご質問がございましたら当社までお問い合わせください。

ECL、DFB、VHG安定化、DBRの単一周波数(SFL)レーザ

ECL Laser Diagram
Click to Enlarge

図1:ECLは、利得チップの外側に回折格子があります。

レーザの多くの用途では、チューナブルな単一周波数動作が必要になります。単一周波数出力を得るための半導体レーザとしては現在、外部共振型(ECL)、分布帰還型(DFB)、体積型ホログラフィック回折格子型(VHG)、分布ブラッグ反射型(DBR)の主に4種類のレーザがあります。どれも回折格子を使用したフィードバックによって単一周波数を出力します。しかしそれぞれ回折格子のフィードバック構造が異なるので、出力や帯域幅、ならびにサイドモード抑圧比(SMSR)などの性能が異なります。下記では、単一周波数半導体レーザの主な違いについて述べています。

外部共振型レーザ
外部共振型レーザ(ECL)は、その構造により多くの標準的な自由空間半導体レーザに対応します。 つまりECLは、半導体レーザ素子が対応する様々な波長で使用することができるということです。 半導体レーザの出力光はレンズによってコリメートされ、回折格子に入射されます(図1参照)。 回折格子はフィードバック(反射)を生じさせ、安定した出力波長を選択するために用いられます。 適切な光学設計により外部共振器が単一縦型のレーザ光のみを選択するため、単一周波数で高サイドモード抑圧比(SMSR> 45 dB)のレーザが出力されます。

ECLのメリットの1つに比較的長い共振器長が超狭線幅(<1 MHz)をもたらすことがあります。 また、様々な半導体レーザを組み込むことができるので、青色ならびに赤色波長において狭線幅の光を放出できる数少ない構造の1つとなっております。 広いチューニングレンジ(>100 nm)を得ることができますが、ECLの機械設計、ならびに半導体レーザの反射防止(AR)コーティングの質によってモードホップする傾向があります。

DBR Laser Diagram
Click to Enlarge

図2:DFBレーザにはアクティブゲイン媒体の長さに沿って、ブラッグ反射鏡が付いています。

分布帰還型レーザ
分布帰還型(DFB)レーザ(TO-Can型近赤外(NIR)域、TO-Can型ピグテールバタフライ型パッケージ、2タブ型Cマウント付き中赤外(MIR)域、Dマウント型およびHHLパッケージ型)は、半導体レーザ構造内に回折格子が組み込まれています(図2参照)。 アクティブ領域と密結合する波形の周期構造がブラッグ反射鏡として働き、単一縦型のレーザ光モードを選択します。 アクティブ領域がブラッグ周波数近くで十分な利得を得られれば、端面反射鏡は必要なく、代わりにブラッグ反射鏡が全ての光フィードバックならびにモード選択に用いられることになります。 この「内蔵型」の光選択によってDFBレーザは、幅広い温度ならびに電流範囲で単一周波数動作を得ることができるのです。 DFBレーザにはモード選択の補助や歩留り向上のためによく位相シフト部分がレーザ構造内に用いられています。

DFBのレーザ波長は、ブラッグ波長とほぼ等しくなっております。

DBR Equation

ここで、λは波長、neffは有効屈折率、Λは回折格子の周期です。 レーザ波長は、有効屈折率を変えることによってチューニングができます。 有効屈折率の変化はDFBレーザの温度ならびに駆動電流のチューニングによって得られます。

DFBレーザは、850 nmでは2 nm、1550 nmでは4 nm、中赤外域(4.00~11.00 µm)では1 cm-1の比較的狭いチューニングレンジとなります。 しかし、このチューニングレンジにわたり単一周波数動作が得られている、つまりこれがモードホップ無しの連続したチューニングレンジであることを意味します。 この特長により、DFBはテレコムやセンサをはじめ、様々な用途で広く使用されています。 DFBの共振器長は比較的短いため、線幅の典型値は1 MHz~10 MHzの範囲内となります。 また、回折格子の構造とアクティブ領域が同じ領域にあるため、DFBの最大光出力は、ECLとDBRレーザに比べて低くなっております。

DBR Laser Diagram
Click to Enlarge

図3: VHGレーザの体積型ホログラフィック回折格子は、アクティブゲイン媒体の外側にあります。

体積型ホログラフィック回折格子型安定化レーザ
体積型ホログラフィック回折格子型(VHG)レーザもブラッグ反射鏡を使用しますが、この場合は、透過型回折格子は半導体レーザ出力の前に置かれます(図3参照)。 この回折格子は半導体レーザの一部ではないため、半導体レーザからは熱的に分離することが可能で、デバイスの波長安定性が向上します。 この回折格子は、通常は複数種類の屈折率の光学材料(通常はガラス)を周期的に積層する構成です。 ブラッグの条件を満たす波長の光だけが反射してレーザ共振器に戻り、それにより非常に高い波長安定性を有するレーザになります。 VHG安定化レーザは、高パワーにおいて、DFBレーザと同様の線幅で出力可能で、広い範囲の電流および温度にわたって波長がロックされます。

DBR Laser Diagram
Click to Enlarge

図4: DBRレーザのブラッグ反射鏡はアクティブゲイン媒体の外側にあります。

分布反射型レーザ
分布反射型(DBR)レーザは、DFBレーザと同様、回折格子が内部に組み込まれています。 しかしDFBレーザの回折格子はアクティブ(利得)領域に沿っているのに対し、DBRレーザの回折格子は、領域の外側に位置しています(図4参照)。 一般的にDBRレーザは典型的なDFBレーザにはない様々な領域を組み込むことが可能なので制御範囲とチューニングレンジがより広くなります。 例えばマルチ電極DBRレーザには位相制御領域があり、回折格子周期や半導体レーザ駆動電流制御とは独立して、位相のみを制御することが可能です。 この制御を共に使用することによってDBRレーザは幅広いチューニングレンジで単一周波数動作が可能となります。 例えば高性能なサンプルグレーティングDBRレーザのチューニングレンジは最大30~40 nmになりえます。 DFBレーザと異なりモードホップフリーではないため、入射ならびに温度を維持できるよう慎重な制御が必要です。

制御構造が複雑なマルチ電極DBRレーザに対し、構造をよりシンプルにしたDBRレーザは単電極のみで設計されています。 単電極DBRレーザには、回折格子ならびに位相制御の複雑構造はありませんが、チューニングレンジはマルチ電極に比べて狭くなります。 チューニングレンジはDFBレーザと同程度になり、駆動電流や温度によってモードホップも生じます。 モードホップのデメリットはありますが、回折格子がデバイスの長さと同じでなければいけない制限はないため、DFBレーザと比べて光出力が大きいなどのメリットもあります。 DBRならびにDFBのレーザの線幅は同程度です。 当社では現在単電極DBRレーザのみをご提供しております。

超低ノイズハイブリッドレーザ
超低ノイズ(ULN)ハイブリッドレーザは、SAF利得チップが比較的長いファイバーブラッググレーティング(FBG)に結合されています。こちらのレーザは外部共振型(ECL)に似たレーザ共振器をファイバの長さに沿って作るよう設計されています。この共振器によりULNシリーズハイブリッドレーザの線幅は約100 Hzと非常に狭く、また相対強度ノイズも-165 dBc/Hz(典型値)と低くなります。ファイバーブラッググレーティング(FBG)の熱的分離を保つ構造を取り、そこで利得媒質から放出される光を部分的に反射させます。格子周期はFBGに熱(その結果かかる熱応力)を加えることで変動させることができます。利得媒質とFBGを独立に温度調整できる構成から、温利得媒質の温度を安定させながら、独立してレーザ出力波長を温度でチューニングします。レーザの構成が優れた低ノイズ性能を発揮するため、レーザ本体がノイズの制限要因になることはないでしょう。レーザの環境をモニタし、振動や音響振動などノイズに寄与する要因を制限し、レーザを低ノイズ電流源で駆動することが重要です。

Hybrid Laser Diagram
Click to Enlarge

図5:当社のハイブリッドレーザは、ファイバーブラッググレーティング(FBG)が利得媒質に結合しています。

結論
ECL、DFB、VHG、DBRレーザは、設計されたチューニングレンジで単一周波数を発振します。ECLは、DFBやDBRレーザよりも幅広い波長の選択が可能となります。モードホップする傾向がありますが、狭い線幅(<1 MHz)をもたらします。適切に設計された機器では、ECLによって超広帯域幅 (> 100 nm)をもたらすことも可能です。

DFBレーザは最も安定した単一周波数レーザです。DFBのレーザーチューニングレンジ(5 nm以下)内ではモードホップフリーの性能を発揮するため、単一周波数レーザとして最もご要望の多いレーザです。特有の連続グレーティングフィードバック構造のため、多くの場合光出力は低くなりますが、異なるタイプのパッケージとすることでより高いパワーを得ることもできます。

VHGレーザは、広い範囲の温度および電流にわたって、波長性能が安定しているため、DFBレーザの典型値よりも高いパワーが可能です。この安定性により組み込み用途(OEM用途)での使用にも適しています。

単電極DBRレーザもDFBレーザ(< 5 nm)に似た線幅とチューニングレンジですが、単電極DBRレーザはチューニング曲線で周期的なモードホップを発生します。

ハイブリッドレーザではノイズが非常に低い信号を得ることができます。この利点を利用するためには、振動ならびに音響振動など不要なノイズ源からレーザを隔離し、低ノイズ電流源で駆動することが必要です。


Posted Comments:
Stefan Englbrecht  (posted 2024-06-25 10:21:53.313)
Hello, Please let me know the line width and wavelenght stability of this diode (nm/°C) Thank you! best regards Stefan
cdolbashian  (posted 2024-07-01 04:43:57.0)
Thank you for reaching out to us with this inquiry. The example temperature tuning can be see with the additional specs, but clicking the blue "i" icon on the product page. Serialized tuning data is shipped with the product. Regarding linewidth, we would expect ~15MHz.

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput PowerOperating
Current
Operating
Voltage
Beam DivergenceLaser ModePackage
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single Transverse ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single Transverse ModeØ5.6 mm
LP405C1405 nm30 mW75 mA4.3 V1.4 mrad1.4 mradSingle Transverse ModeØ3.8 mm, SM Pigtail with Collimator
L405G2405 nm35 mW50 mA4.9 V10°21°Single Transverse ModeØ3.8 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single Transverse ModeØ5.6 mm
L405A1405 nm175 mW (Min)150 mA5.0 V20°Single Transverse ModeØ5.6 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
LP450-SF25450 nm25 mW75 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L450G3450 nm100 mW (Min)80 mA5.2 V8.4°21.5°Single Transverse ModeØ3.8 mm
L450G2450 nm100 mW (Min)80 mA5.0 V8.4°21.5°Single Transverse ModeØ5.6 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
L473P100473 nm100 mW120 mA5.7 V1024Single Transverse ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP488-SF20G488 nm20 mW80 mA5.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V23°Single Transverse ModeØ5.6 mm
LP515-SF3515 nm3 mW50 mA5.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L515A1515 nm10 mW50 mA5.4 V6.5°21°Single Transverse ModeØ5.6 mm
LP520-SF15A520 nm15 mW100 mA7.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP520-SF15520 nm15 mW140 mA6.5 V--Single Transverse ModeØ9 mm, SM Pigtail
L520A1520 nm30 mW (Min)80 mA5.5 V22°Single Transverse ModeØ5.6 mm
PL520520 nm50 mW250 mA7.0 V22°Single Transverse ModeØ3.8 mm
L520P50520 nm45 mW150 mA7.0 V22°Single Transverse ModeØ5.6 mm
L520A2520 nm110 mW (Min)225 mA5.9 V22°Single Transverse ModeØ5.6 mm
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single Transverse ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW60 mA2.2 V--Single Transverse ModeØ9.0 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single Transverse ModeØ5.6 mm
HL6312G635 nm5 mW50 mA<2.7 V31°Single Transverse ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW60 mA2.2 V31°Single Transverse ModeØ9 mm
HL6322G635 nm15 mW75 mA2.4 V30°Single Transverse ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single Transverse ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single Transverse ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single Transverse ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L637G1637 nm1200 mW1100 mA2.5 V10°32°MultimodeØ9 mm (non-standard)
L638P040638 nm40 mW92 mA2.4 V10°21°Single Transverse ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single Transverse ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single Transverse ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.4 V21°Single Transverse ModeØ5.6 mm
HL6323MG639 nm30 mW100 mA2.5 V8.5°30°Single Transverse ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW110 mA2.5 V--Single Transverse ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW120 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6366DG642 nm80 mW150 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6385DG642 nm150 mW250 mA2.6 V17°Single Transverse ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single Transverse ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW75 mA2.6 V8.5°22°Single Transverse ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single Transverse ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single Transverse ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single Transverse ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single Transverse ModeØ5.6 mm
L670VH1670 nm1 mW2.5 mA2.6 V10°10°Single Transverse ModeTO-46
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single Transverse ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single Transverse ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single Transverse ModeØ5.6 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW70 mA2.3 V21°Single Transverse ModeØ5.6 mm
HL6738MG690 nm30 mW85 mA2.5 V8.5°19°Single Transverse ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
LP730-SF15730 nm15 mW70 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7302MG730 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
L760VH1760 nm0.5 mW3 mA (Max)2.2 V12°12°Single FrequencyTO-46
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L763VH1763 nm0.5 mW3 mA (Max)2.0 V10°10°Single FrequencyTO-46
DBR767PN767 nm23 mW220 mA1.87 V--Single FrequencyButterfly, PM Pigtail
DBR770PN770 nm35 mW220 mA1.92 V--Single FrequencyButterfly, PM Pigtail
L780P010780 nm10 mW24 mA1.8 V30°Single Transverse ModeØ5.6 mm
LP780-SAD15780 nm15 mW180 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
DBR780PN780 nm45 mW250 mA1.9 V--Single FrequencyButterfly, PM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single Transverse ModeØ5.6 mm
LPS-PM785-FC785 nm6.5 mW60 mA---Single Transverse ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single Transverse ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L785P25785 nm25 mW45 mA1.9 V30°Single Transverse ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV785P785 nm50 mW410 mA2.1 V--Single FrequencyButterfly, PM Pigtail
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW125 mA2.0 V10°17°Single Transverse ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
FPL785P785 nm200 mW500 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single Transverse ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Transverse Mode3 mm x 5 mm Submount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single Transverse ModeØ9 mm
FPV785M785 nm600 mW1100 mA1.9 V--MultimodeButterfly, MM Pigtail
L795VH1795 nm0.25 mW1.2 mA1.8 V20°12°Single FrequencyTO-46
DBR795PN795 nm40 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR808PN808 nm42 mW250 mA2 V--Single FrequencyButterfly, PM Pigtail
LP808-SA60808 nm60 mW150 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-808-0150808 nm150 mW180 mA1.9 V17°Single Transverse ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
FPL808P808 nm200 mW600 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL808S808 nm200 mW750 mA2.3 V--Single Transverse ModeButterfly, SM Pigtail
L808H1808 nm300 mW400 mA2.1 V14°Single Transverse ModeØ9 mm
LD808-SE500808 nm500 mW750 mA2.2 V14°Single Transverse ModeØ9 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
DBR816PN816 nm45 mW250 mA1.95 V--Single FrequencyButterfly, PM Pigtail
LP820-SF80820 nm80 mW230 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single Transverse ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single Transverse ModeØ5.6 mm
DBR828PN828 nm24 mW250 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-830-FC830 nm10 mW120 mA---Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW50 mA2.0 V--Single Transverse ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
L830H1830 nm250 mW3 A (Max)2 V10°Single Transverse ModeØ9 mm
FPL830P830 nm300 mW900 mA2.22 V--Single Transverse ModeButterfly, PM Pigtail
FPL830S830 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD830-SE650830 nm650 mW900 mA2.3 V13°Single Transverse ModeØ9 mm
LD830-MA1W830 nm1 W2 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single Transverse ModeØ5.6 mm
L850VH1850 nm1 mW6 mA (Max)2 V12°12°Single FrequencyTO-46
L850P010850 nm10 mW50 mA2 V10°30°Single Transverse ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single Transverse ModeØ5.6 mm
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV852P852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, PM Pigtail
DBR852PN852 nm24 mW300 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
LP852-SF60852 nm60 mW150 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P100852 nm100 mW120 mA1.9 V28°Single Transverse ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single Transverse ModeØ9 mm
L852SEV1852 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
L852H1852 nm300 mW415 mA (Max)2 V15°Single Transverse ModeØ9 mm
FPL852P852 nm300 mW900 mA2.35 V--Single Transverse ModeButterfly, PM Pigtail
FPL852S852 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single Transverse ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single Transverse ModeØ5.6 mm
L895VH1895 nm0.2 mW1.4 mA1.6 V20°13°Single FrequencyTO-46
DBR895PN895 nm12 mW300 mA2 V--Single FrequencyButterfly, PM Pigtail
LP904-SF3904 nm3 mW30 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L904P010904 nm10 mW50 mA2.0 V10°30°Single Transverse ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
DBR935PN935 nm13 mW300 mA1.75 V--Single FrequencyButterfly, PM Pigtail
LP940-SF30940 nm30 mW90 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single Transverse ModeØ9 mm
L960H1960 nm250 mW400 mA2.1 V11°12°Single Transverse ModeØ9 mm
FPV976S976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, SM Pigtail
FPV976P976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, PM Pigtail
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L976SEV1976 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
BL976-SAG3976 nm300 mW470 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
BL976-PAG500976 nm500 mW830 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single Transverse ModeButterfly, PM Pigtail
L980P010980 nm10 mW25 mA2 V10°30°Single Transverse ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW50 mA1.5 V10°35°Single Transverse ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
LP980-SA60980 nm60 mW230 mA2.0 V--Single Transverse ModeØ9.0 mm, SM Pigtail
LP980-SA100980 nm100 mW180 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L980H1980 nm200 mW300 mA (Max)2.0 V13°Single Transverse ModeØ9 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
DBR1060SN1060 nm130 mW650 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1060PN1060 nm130 mW650 mA1.8 V--Single FrequencyButterfly, PM Pigtail
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single Transverse ModeØ9 mm
L1064H11064 nm300 mW700 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
L1064H21064 nm450 mW1100 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
DBR1083PN1083 nm100 mW500 mA1.75 V--Single FrequencyButterfly, PM Pigtail
L1270P5DFB1270 nm5 mW15 mA1.1 VSingle FrequencyØ5.6 mm
L1290P5DFB1290 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1310-PAD21310 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
LPS-1310-FC1310 nm2.5 mW20 mA1.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single Transverse ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
ML725B8F1310 nm5 mW20 mA1.1 V25°30°Single Transverse ModeØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1053P1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single Transverse ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1330P5DFB1330 nm5 mW14 mA1.0 VSingle FrequencyØ5.6 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1425-PAG5001425 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL1436-PAG5001436 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1456-PAG5001456 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1470P5DFB1470 nm5 mW19 mA1.0 VSingle FrequencyØ5.6 mm
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
L1490P5DFB1490 nm5 mW24 mA1.0 VSingle FrequencyØ5.6 mm
L1510P5DFB1510 nm5 mW20 mA1.0 VSingle FrequencyØ5.6 mm
L1530P5DFB1530 nm5 mW21 mA1.0 VSingle FrequencyØ5.6 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1550-PAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.0 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single Transverse ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, SM Pigtail
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, PM Pigtail
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, SM Pigtail
FPL1009P1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, PM Pigtail
ULN15PC1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
ULN15PT1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single Transverse ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
DFB15501555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550N1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550P1555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
DFB1550PN1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
L1570P5DFB1570 nm5 mW25 mA1.0 VSingle FrequencyØ5.6 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1054P1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1054T1625 nm200 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1059S1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1059P1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1940S1940 nm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000S2 µm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000C2 µm30 mW400 mA5.2 V19°Single Transverse ModeChip on Submount
ID3250HHLH3.00 - 3.50 µm (DFB)5 mW400 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyTwo-Tab C-Mount
QF3850T13.85 µm (FP)200 mW600 mA (Max)13.5 V30°40°Single Transverse ModeØ9 mm
QF3850HHLH3.85 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF4040HHLH4.05 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD4500CM14.00 - 5.00 µm (DFB)40 mW500 mA (Max)10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QD4500HHLH4.00 - 5.00 µm (DFB)80 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4050T24.05 µm (FP)70 mW250 mA12 V30°40°Single Transverse ModeØ9 mm
QF4050C24.05 µm (FP)300 mW400 mA12 V3042Single Transverse ModeTwo-Tab C-Mount
QF4050T14.05 µm (FP)300 mW600 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single Transverse ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single Transverse ModeD-Mount
QD4472HH4.472 µm (DFB)85 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4600T24.60 µm (FP)200 mW500 mA (Max)13.0 V30°40°Single Transverse ModeØ9 mm
QF4600T14.60 µm (FP)400 mW800 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4600C24.60 µm (FP)600 mW600 mA12 V30°42°Single Transverse ModeTwo-Tab C-Mount
QF4600T34.60 µm (FP)1000 mW800 mA (Max)13 V30°40°Single Transverse ModeØ9 mm
QF4600D44.60 µm (FP)2500 mW1800 mA12.5 V40°30°Single Transverse ModeD-Mount
QF4600D34.60 µm (FP)3000 mW1700 mA12.5 V30°40°Single Transverse ModeD-Mount
QD4602HH4.602 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4650HHLH4.65 µm (FP)1500 mW (Min)1100 mA12 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD5500CM15.00 - 6.00 µm (DFB)40 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5500HHLH5.00 - 6.00 µm (DFB)150 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD5250C25.20 - 5.30 µm (DFB)60 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5263HH5.263 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6500CM16.00 - 7.00 µm (DFB)40 mW650 mA (Max)10 V35°50°Single FrequencyTwo-Tab C-Mount
QD6500HHLH6.00 - 7.00 µm (DFB)80 mW600 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6134HH6.134 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500CM17.00 - 8.00 µm (DFB)40 mW600 mA (Max)10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500HHLH7.00 - 8.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500DM17.00 - 8.00 µm (DFB)100 mW600 mA (Max)11.5 V40°55°Single FrequencyD-Mount
QD7416HH7.416 µm (DFB)100 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7716HH7.716 µm (DFB)30 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF7900HB7.9 µm (FP)700 mW1600 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD7901HH7.901 µm (DFB)50 mW700 mA (Max)10 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD8050CM18.00 - 8.10 µm (DFB)100 mW1000 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW900 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF8450C28.45 µm (FP)300 mW750 mA9 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF8500HB8.5 µm (FP)500 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD8650CM18.60 - 8.70 µm (DFB)50 mW900 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8912HH8.912 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9500CM19.00 - 10.00 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9062HH9.062 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF9150C29.15 µm (FP)200 mW850 mA11 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF9200HB9.2 µm (FP)250 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF9500T19.5 µm (FP)300 mW550 mA12 V40°55°Single Transverse ModeØ9 mm
QD9550C29.50 - 9.60 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single Transverse ModeTwo-Tab C-Mount
QD9697HH9.697 µm (DFB)80 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10500CM110.00 - 11.00 µm (DFB)40 mW600 mA (Max)10 V40°55°Single FrequencyTwo-Tab C-Mount
QD10500HHLH10.00 - 11.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10530HH10.530 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10549HH10.549 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10622HH10.622 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL

The rows shaded green above denote single-frequency lasers.
Back to Top

785 nm体積型ホログラフィック回折格子型(VHG)安定化レーザ、Ø9 mm TO-Canパッケージ

Item #InfoWavelengthPower
(Typical)a
Operating
Current
(Max)a,b
Pin
Code
PackageBuilt-In
Isolator
Compatible
Socket
Wavelength
Tested
Laser
Mode
Recommended
MountDriver
LD785-SEV300cinfo785 nm300 mW500 mAEØ9 mm TO CandNoS8060 or
S8060-4
YesSingle
Frequencye
LDM90(/M)LDC205Cf
  • 最大出力および最大駆動電流については、どちらか一方でもこれらの値を超えてはいけません。
  • 波長安定化温度範囲内であれば、波長安定性と単一周波数特性を維持しながら、シリアルナンバ別の資料内に記載されている動作電流範囲にわたって出力をチューニングすることが可能です。
  • 仕様の性能を実現するには、半導体レーザーマウントLDM90/Mのご使用をお勧めします。またコリメートする場合は、近赤外域アイソレータをお勧めします。コリメート時の単一周波数特性は、後方反射のアイソレーションが> 35 dBの場合のみ保証されます。
  • LD785-SEV300のØ9 mmパッケージの最大径部分の厚さは4.30 mmで、厚さ1.50 mmの標準のØ9 mmパッケージよりも厚くなります。この半導体レーザは、どのØ9 mm半導体レーザーマウントをお使いいただいても機能します。パッケージの仕様については上の表の青いInfoアイコン(info)をクリック後、「Drawing」タブよりご覧いただけます。レーザをレーザマウントLDM90/Mに取り付けるには、レーザに付属する#2-56ネジ2個が必要です。
  • 単一縦モードと単一横モード
  • 電流コントローラLDC205Cは当社の温度コントローラ( TED200Cなど)と併せてお使いになることをお勧めします。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
Choose ItemLD785-SEV300 Support Documentation
LD785-SEV300Customer Inspired! 785 nm, 300 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
¥224,753
7-10 Days
Back to Top

808 nm体積型ホログラフィック回折格子型(VHG)安定化レーザ、Ø9 mm TO-Can型パッケージ

Item #InfoWavelengthPower
(Typical)a
Operating
Current
(Max)a,b
Pin
Code
PackageBuilt-In
Isolator
Compatible
Socket
Wavelength
Tested
Laser
Mode
Recommended
MountDriver
LD808-SEV500cinfo808 nm500 mW800 mAEØ9 mm TO CandNoS8060 or
S8060-4
YesSingle
Frequencye
LDM90(/M)ITC4001f
  • 最大出力および最大駆動電流については、どちらか一方でもこれらの値を超えてはいけません。
  • 波長安定化温度範囲内であれば、波長安定性と単一周波数特性を維持しながら、動作電流範囲にわたって出力をチューニングすることが可能です。波長安定化温度範囲と動作電流範囲はシリアルナンバ別の資料内に記載されています。
  • 仕様の性能を実現するには、半導体レーザーマウントLDM90/Mのご使用をお勧めします。またコリメートする場合は、近赤外域アイソレータをお勧めします。コリメート時の単一周波数特性は、後方反射のアイソレーションが> 35 dBの場合のみ保証されます。
  • LD808-SEV300のØ9 mmパッケージの最大径部分の厚さは4.30 mmで、厚さ1.50 mmの標準のØ9 mmパッケージよりも厚くなります。この半導体レーザは、どのØ9 mm半導体レーザーマウントをお使いいただいても機能します。パッケージの仕様については上の表の青いInfoアイコン(info) をクリック後、「Drawing」タブよりご覧いただけます。レーザをレーザマウントLDM90/Mに取り付けるには、レーザに付属する#2-56ネジ2個が必要です。
  • 単一縦モードと単一横モード
  • 当社では半導体レーザ/TECコントローラITC4001(ノイズ低減フィルタを作動させて)のご使用をお勧めいたします。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
Choose ItemLD808-SEV500 Support Documentation
LD808-SEV500808 nm, 500 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
¥241,352
Volume Pricing
7-10 Days
Back to Top

852 nm体積型ホログラフィック回折格子型(VHG)安定化レーザ、Ø9 mm TO-Canパッケージ

Item #InfoWavelengthPower
(Typical)a
Operating
Current
(Max)a,b
Pin
Code
PackageBuilt-In
Isolator
Compatible
Socket
Wavelength
Tested
Laser
Mode
Recommended
MountDriver
L852SEV1cinfo852 nm270 mW400 mAEØ9 mm TO CandNoS8060 or
S8060-4
YesSingle
Frequencye
LDM90(/M)ITC4001f
LD852-SEV600cinfo852 nm600 mW1050 mAEØ9 mm TO CandNoS8060 or
S8060-4
YesSingle
Frequencye
LDM90(/M)ITC4001f
  • 最大出力および最大駆動電流については、どちらか一方でもこれらの値を超えてはいけません。
  • 波長安定化温度範囲内であれば、波長安定性と単一周波数特性を維持しながら、動作電流範囲にわたって出力をチューニングすることが可能です。波長安定化温度範囲と動作電流範囲はシリアルナンバ別の資料内に記載されています。
  • 仕様の性能を実現するには、半導体レーザーマウントLDM90/Mのご使用をお勧めします。またコリメートする場合は、近赤外域アイソレータをお勧めします。コリメート時の単一周波数特性は、後方反射のアイソレーションが> 35 dBの場合のみ保証されます。
  • L852SEV1とLD852-SEV600のØ9 mmパッケージは最大径部分の厚さが4.30 mmで、厚さ1.50 mmの標準のØ9 mmパッケージよりも厚くなります。この半導体レーザは、どのØ9 mm半導体レーザーマウントをお使いいただいても機能します。パッケージの仕様については上の表の青いInfoアイコン(info)をクリック後、「Drawing」タブよりご覧いただけます。レーザをレーザマウントLDM90/Mに取り付けるには、レーザに付属する#2-56ネジ2個が必要です。
  • 単一縦モードと単一横モード
  • 当社では半導体レーザ/TECコントローラITC4001(ノイズ低減フィルタを作動させて)のご使用をお勧めいたします。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
Choose ItemL852SEV1 Support Documentation
L852SEV1852 nm, 270 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
¥137,000
7-10 Days
Choose ItemLD852-SEV600 Support Documentation
LD852-SEV600852 nm, 600 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
¥241,352
Volume Pricing
7-10 Days
Back to Top

976 nm体積型ホログラフィック回折格子型(VHG)安定化レーザ、Ø9 mm TO-Canパッケージ

Item #InfoWavelengthPower
(Typical)a
Operating
Current
(Max)a,b
Pin
Code
PackageBuilt-In
Isolator
Compatible
Socket
Wavelength
Tested
Laser
Mode
Recommended
MountDriver
L976SEV1cinfo976 nm270 mW400 mAEØ9 mm TO CandNoS8060 or
S8060-4
YesSingle
Frequencye
LDM90(/M)ITC4001f
  • 最大出力および最大駆動電流については、どちらか一方でもこれらの値を超えてはいけません。
  • 波長安定化温度範囲内であれば、波長安定性と単一周波数特性を維持しながら、動作電流範囲にわたって出力をチューニングすることが可能です。波長安定化温度範囲と動作電流範囲はシリアルナンバ別の資料内に記載されています。
  • 仕様の性能を実現するには、半導体レーザーマウントLDM90/Mのご使用をお勧めします。またコリメートする場合は、近赤外域アイソレータをお勧めします。コリメート時の単一周波数特性は、後方反射のアイソレーションが> 35 dBの場合のみ保証されます。
  • LD976-SEV1のØ9 mmパッケージの最大径部分の厚さは4.30 mmで、厚さ1.50 mmの標準のØ9 mmパッケージよりも厚くなります。この半導体レーザは、どのØ9 mm半導体レーザーマウントをお使いいただいても機能します。パッケージの仕様については上の表の青いInfoアイコン(info) をクリック後、「Drawing」タブよりご覧いただけます。レーザをレーザマウントLDM90/Mに取り付けるには、レーザに付属する#2-56ネジ2個が必要です。
  • 単一縦モードと単一横モード
  • 当社では半導体レーザ/TECコントローラITC4001(ノイズ低減フィルタを作動させて)のご使用をお勧めいたします。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
Choose ItemL976SEV1 Support Documentation
L976SEV1976 nm, 270 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
¥209,610
7-10 Days